Advertisement

Journal of Molecular Neuroscience

, Volume 40, Issue 1–2, pp 40–46 | Cite as

Expression and Localization of PRiMA-Linked Globular Form Acetylcholinesterase in Vertebrate Neuromuscular Junctions

  • Karl W. K. TsimEmail author
  • K. Wing Leung
  • Ka Wai Mok
  • Vicky P. Chen
  • Kevin Y. Zhu
  • Judy T. T. Zhu
  • Ava J. Y. Guo
  • Cathy W. C. Bi
  • Ken Y. Z. Zheng
  • David T. W. Lau
  • Heidi Q. Xie
  • Roy C. Y. Choi
Article

Abstract

Acetylcholinesterase (AChE) is well known to process different molecular forms via the distinct interacting partners. Proline-rich membrane anchor (PRiMA)-linked tetrameric globular AChE (G4 AChE) is mainly found in the vertebrate brain; however, recent studies from our laboratory have suggested its existence at neuromuscular junctions (nmjs). Both muscle and motor neuron express AChE at the nmjs. In muscle, the expression of PRiMA-linked AChE is down-regulated during myogenic differentiation and by motor neuron innervation. As compared with muscle, spinal cord possessed higher total AChE activity and contained PRiMA-linked AChE forms. The spinal cord expression of this form increased during development. More importantly, PRiMA-linked G4 AChE identified as aggregates localized at nmjs. These findings suggest that the restricted localization of PRiMA-linked G4 AChE at the nmjs could be contributed by the pre-synaptic motor neuron and/or the post-synaptic muscle fiber.

Keywords

AChE PRiMA G4 AChE Muscle Spinal cord Neuromuscular junctions 

Notes

Acknowledgements

The research was supported by grants from Research Grants Council (HKUST6419/06M, 662407, 662608, and N_HKUST629/07) of the Hong Kong SAR to KWKT.

References

  1. Anglister, L. (1991). Acetylcholinesterase from the motor nerve terminal accumulates on the synaptic basal lamina of the myofiber. Journal of Cell Biology, 115, 755–764.CrossRefPubMedGoogle Scholar
  2. Bacou, F. (1982). Acetylcholinesterase forms in fast and slow rabbit muscle. Nature, 296, 661–664.CrossRefPubMedGoogle Scholar
  3. Boudreau-Larivière, C., Chan, R. Y., Wu, J., & Jasmin, B. J. (2000). Molecular mechanisms underlying the activity-linked alterations in acetylcholinesterase mRNAs in developing versus adult rat skeletal muscles. Journal of Neurochemistry, 74, 2250–2258.CrossRefPubMedGoogle Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  5. Choi, R. C. Y., Mok, M. K., Cheung, A. W., Siow, N. L., Xie, H. Q., & Tsim, K. W. K. (2008). Regulation of PRiMA-linked G4 AChE by a cAMP-dependent signaling pathway in cultured rat pheochromocyoma PC12 cells. Chemico-Biological Interactions, 175, 76–78.CrossRefPubMedGoogle Scholar
  6. De la Porte, S., Vallette, F. M., Grassi, J., Vigny, M., & Koenig, J. (1986). Presynaptic or postsynaptic origin of acetylcholinesterase in heterologous nerve-muscle cocultures. Developmental Biology, 116, 69–77.CrossRefGoogle Scholar
  7. Falasca, C., Perrier, N., Massoulié, J., & Bon, S. (2005). Determinants of the t peptide involved in folding, degradation and secretion of acetylcholinesterase. Journal of Biological Chemistry, 280, 878–886.CrossRefPubMedGoogle Scholar
  8. Jiang, J. X. S., Choi, R. C. Y., Siow, N. L., Lee, H. H. C., Wan, D. C. C., & Tsim, K. W. K. (2003). Muscle induces neuronal expression of acetylcholinesterase in neuron-muscle co-culture: Transcriptional regulation mediated by cAMP-dependent signaling. Journal of Biological Chemistry, 278, 45435–45444.CrossRefPubMedGoogle Scholar
  9. Lee, H. H., Choi, R. C., Ting, A. K., Siow, N. L., Jiang, J. X., Massoulié, J., et al. (2004). Transcriptional regulation of acetylcholinesterase-associated collagen ColQ: Differential expression in fast and slow twitch muscle fibers is driven by distinct promoters. Journal of Biological Chemistry, 279, 27098–27107.CrossRefPubMedGoogle Scholar
  10. Leung, K. W., Xie, H. Q., Chen, V. P., Mok, M. K. W., Chu, G. K. Y., Choi, R. C. Y., et al. (2009). Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions: Contribution and expression from motor neurons. FEBS J, 276, 3031–3042.CrossRefPubMedGoogle Scholar
  11. Loeb, J. A., & Fischbach, G. D. (1997). Neurotrophic factors increase neuregulin expression in embryonic ventral spinl cord neurons. Journal of Neuroscience, 17, 1416–1424.PubMedGoogle Scholar
  12. Lyles, J. M., Silman, I., & Barnard, E. A. (1979). Developmental changes in levels and forms of cholinesterases in muscles of normal and dystrophic chickens. Journal of Neurochemistry, 33, 727–738.CrossRefPubMedGoogle Scholar
  13. Massoulié, J. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41, 31–91.CrossRefPubMedGoogle Scholar
  14. Massoulié, J. (2002). The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals, 11, 130–143.CrossRefPubMedGoogle Scholar
  15. Massoulié, J., Bon, S., Perrier, N., & Falasca, C. (2005). The C-terminal peptides of acetylcholinesterase: Cellular trafficking, oligomerization and functional anchoring. Chemico-Biological Interactions, 157–158, 3–14.CrossRefPubMedGoogle Scholar
  16. McMahan, U. J., Sanes, J. R., & Marshall, L. M. (1987). Cholinesterase is associated with the asal lamina at the neuromuscular junction. Nature, 271, 172–174.CrossRefGoogle Scholar
  17. Perrier, A. L., Massoulié, J., & Krejci, E. (2002). PriMA: The membrane anchor of acetylcholinesterase in the brain. Neuron, 33, 275–285.CrossRefPubMedGoogle Scholar
  18. Perrier, N. A., Khérif, S., Perrier, A. L., Dumas, S., Mallet, J., & Massoulié, J. (2003). Expression of PRiMA in the mouse brain: Membrane anchoring and accumulation of ‘tailed’ acetylcholinesterase. European Journal of Neuroscience, 18, 1837–1847.CrossRefPubMedGoogle Scholar
  19. Tsim, K. W. K., Choi, R. C. Y., Dong, T. T. X., & Wan, D. C. C. (1997). A globular, not asymmetric, form of acetylcholinesterase is expressed in chick motor neurons: Down-regulation toward maturity and after denervation. Journal of Neurochemistry, 68, 479–487.PubMedCrossRefGoogle Scholar
  20. Wan, D. C., Ng, Y. P., Choi, R. C. Y., Cheung, P. W., Dong, T. T., & Tsim, K. W. K. (1997). Denervation decreases the ipsilateral expression of AChE in chick lumbric motor neurons. Neuroscience Letters, 232, 83–86.CrossRefPubMedGoogle Scholar
  21. Xie, H. Q., Choi, R. C. Y., Leung, K. W., Siow, N. L., Kong, L. W., Lau, F. T. C., et al. (2007). Regulation of a transcript encoding the proline-rich membrane anchor of globular muscle acatelycholinesterase. The suppressive roles of myogenesis and innervating nerves. Journal of Biological Chemistry, 282, 11765–11775.CrossRefPubMedGoogle Scholar
  22. Xie, H. Q., Choi, R. C. Y., Leung, W. K. W., Chen, V. P., Chu, G. K. Y., & Tsim, K. W. K. (2009). Transcriptional regulation of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase in neuron: An inductive effect of neuron differentiation. Brain Res, 1265, 13–23.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Karl W. K. Tsim
    • 2
    Email author
  • K. Wing Leung
    • 1
  • Ka Wai Mok
    • 1
  • Vicky P. Chen
    • 1
  • Kevin Y. Zhu
    • 1
  • Judy T. T. Zhu
    • 1
  • Ava J. Y. Guo
    • 1
  • Cathy W. C. Bi
    • 1
  • Ken Y. Z. Zheng
    • 1
  • David T. W. Lau
    • 1
  • Heidi Q. Xie
    • 1
  • Roy C. Y. Choi
    • 1
  1. 1.Department of Biology and Center for Chinese MedicineThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of BiologyThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations