Journal of Molecular Neuroscience

, Volume 40, Issue 1–2, pp 211–216 | Cite as

Mechanisms of Neuroprotective Effects of Nicotine and Acetylcholinesterase Inhibitors: Role of α4 and α7 Receptors in Neuroprotection

  • Akinori AkaikeEmail author
  • Yuki Takada-Takatori
  • Toshiaki Kume
  • Yasuhiko Izumi


Neurotoxicity induced by glutamate and other excitatory amino acids has been implicated in various neurodegenerative disorders including hypoxic ischemic events, trauma, and Alzheimer’s and Parkinson’s diseases. We examined the roles of nicotinic acetylcholine receptors (nAChRs) in survival of CNS neurons during excitotoxic events. Nicotine as well as other nicotinic receptor agonists protected cortical neurons against glutamate neurotoxicity via α4 and α7 nAChRs at least partly by inhibiting the process of apoptosis in near-pure neuronal cultures obtained from the cerebral cortex of fetal rats. Donepezil, galanatamine and tacrine, therapeutic acetylcholinesterase (AChE) inhibitors currently being used for treatment of Alzheimer’s disease also protected neuronal cells from glutamate neurotoxicity. Protective effects of nicotine and the AChE inhibitors were antagonized by nAChR antagonists. Moreover, nicotine and those AChE inhibitors induced up-regulation of nAChRs. Inhibitors for a non-receptor-type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galantamine. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor also suppressed the neuroprotective effect of the AChE inhibitors. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galantamine treatments. These results suggest that nicotine as well as AChE inhibitors, donepezil and galantamine, prevent glutamate neurotoxicity through α4 and α7 nAChRs and the PI3K-Akt pathway.


Nicotinic receptor Acetylcholinesterase Neuroprotection Glutamate neurotoxicity Up-regulation 



This study was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, and Technology of Japan to Akinori Akaike, Yuki Takda-Takatori, and Toshiaki Kume. This study was also supported in part by a grant from the Smoking Research Foundation, Japan.


  1. Akaike, A. (2006). Preclinical evidence of neuroprotection by cholinesterase inhibitors. Alzheimer Disease and Associated Disorders, 20, S8–S11.CrossRefPubMedGoogle Scholar
  2. Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., & Kimura, J. (1994). Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Research, 644, 181–187.CrossRefPubMedGoogle Scholar
  3. Akasofu, S., Kosasa, T., Kimura, M., & Kubota, A. (2003). Protective effect of donepezil in a primary culture of rat cortical neurons exposed to oxygen glucose deprivation. European Journal of Pharmacology, 472, 57–63.CrossRefPubMedGoogle Scholar
  4. Barnes, C. A., Meltzer, J., Houston, F., Orr, G., McGann, K., & Wenk, G. L. (2000). Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience, 99, 17–23.CrossRefPubMedGoogle Scholar
  5. Collerton, D. (1986). Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience, 19, 1–28.CrossRefPubMedGoogle Scholar
  6. Dajas-Bailador, F., & Wonnacott, S. (2004). Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends in Pharmacological Sciences, 25, 317–324.CrossRefPubMedGoogle Scholar
  7. Darsow, T., Booker, T. K., Piña-Crespo, J. C., & Heinemann, S. F. (2005). Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 280, 18311–18320.CrossRefPubMedGoogle Scholar
  8. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., & Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America, 88, 6368–6371.CrossRefPubMedGoogle Scholar
  9. Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–395.CrossRefPubMedGoogle Scholar
  10. Kaneko, S., Maeda, T., Kume, T., Kochiyama, H., Akaike, A., Shimohama, S., et al. (1997). Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via α7 neuronal receptors and neuronal CNS receptors. Brain Research, 765, 135–140.CrossRefPubMedGoogle Scholar
  11. Kihara, T., Shimohama, S., Sawada, H., Kimura, J., Kume, T., Maeda, T., et al. (1997). Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Annals of Neurology, 42, 159–163.CrossRefPubMedGoogle Scholar
  12. Kihara, T., Shimohama, S., Sawada, H., Honda, H., Nakamizo, T., Shibasaki, H., et al. (2001). α7 Nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a β-amyoid-induced neurotoxcity. Journal of Biological Chemistry, 276, 13541–13546.PubMedGoogle Scholar
  13. Kume, T., Asai, N., Nishikawa, H., Mano, N., Terauchi, T., Taguchi, R., et al. (2002). Isolation of a diterpenoid substance with potent neuroprotective activity from fetal calf serum. Proceedings of the National Academy of Sciences of the United States of America, 99, 3288–3293.CrossRefPubMedGoogle Scholar
  14. Kuryatov, A., Luo, J., Cooper, J., & Lindstrom, J. (2005). Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Molecular Pharmacology, 68, 1839–1851.PubMedGoogle Scholar
  15. Levin, E. D., McClernon, F. J., & Rezvani, A. H. (2006). Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacol. (Berl), 184, 529–534.Google Scholar
  16. Maelicke, A., Samochocki, M., Jostock, R., Fehrenbacher, A., Ludwig, J., Albuquerque, E. X., et al. (2001). Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer's disease. Biological Psychiatry, 49, 279–288.CrossRefPubMedGoogle Scholar
  17. Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., Heinemann, S. F., et al. (1992). Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. Journal of Neuroscience, 12, 2765–2784.PubMedGoogle Scholar
  18. Martinez, M., Frank, A., Diez-Tejedor, E., & Hernanz, A. (1993). Amino acid concentrations in cerebrospinal fluid and serum in Alzheimer's disease and vascular dementia. Journal of Neural Transmission. Parkinson's Disease and Dementia, 6, 1–9.CrossRefGoogle Scholar
  19. Matsuzaki, H., Tamatani, M., Mitsuda, N., Namikawa, K., Kiyama, H., Miyake, S., et al. (1999). Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. Journal of Neurochemistry, 73, 2037–2046.PubMedGoogle Scholar
  20. Meldrum, B., & Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends in Pharmacological Sciences, 11, 379–387.CrossRefPubMedGoogle Scholar
  21. Nordberg, A. (2006). Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Disease and Associated Disorders, 20, S12–S18.CrossRefPubMedGoogle Scholar
  22. Nordberg, A., Amberla, K., Shigeta, M., Lundqvist, H., Viitanen, M., Hellström-Lindahl, E., et al. (1998). Long-term tacrine treatment in three mild Alzheimer patients: Effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Disease and Associated Disorders, 12, 228–237.PubMedCrossRefGoogle Scholar
  23. Rosa, A. O., Egea, J., Gandía, L., López, M. G., & García, A. G. (2006). Neuroprotection by nicotine in hippocampal slices subjected to oxygen-glucose deprivation: involvement of the alpha7 nAChR subtype. Journal of Molecular Neuroscience, 30, 61–62.CrossRefPubMedGoogle Scholar
  24. Reid, R. T., & Sabbagh, M. N. (2003). Effects of donepezil treatment on rat nicotinic acetylcholine receptor levels in vivo and in vitro. Journal of Alzheimer's Disease, 5, 429–436.PubMedGoogle Scholar
  25. Sallette, J., Pons, S., Devillers-Thiery, A., Soudant, M., Prado de Carvalho, L., Changeux, J. P., et al. (2005). Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron, 46, 595–607.CrossRefPubMedGoogle Scholar
  26. Shimohama, S., Akaike, A., & Kimura, J. (1996). Nicotine-induced protection against glutamate cytotoxicity-nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Annals of the New York Academy of Sciences, 777, 356–361.CrossRefPubMedGoogle Scholar
  27. Takada-Takatori, Y., Yonezawa, A., Kume, T., Katsuki, H., Kaneko, S., Sugimoto, H., et al. (2003). Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. Journal of Pharmacology and Experimental Therapeutics, 306, 772–777.CrossRefGoogle Scholar
  28. Takada-Takatori, Y., Kume, T., Sugimoto, M., Katsuki, H., Niidome, T., Sugimoto, H., et al. (2006a). Neuroprotective effects of galanthamine and tacrine against glutamate neurotoxicity. European Journal of Pharmacology, 549, 19–26.CrossRefPubMedGoogle Scholar
  29. Takada-Takatori, Y., Kume, T., Sugimoto, M., Katsuki, H., Sugimoto, H., & Akaike, A. (2006b). Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacoloy, 51, 474–486.CrossRefGoogle Scholar
  30. Takada-Takatori, Y., Kume, T., Ohgi, Y., Izumi, Y., Niidome, T., Fujii, T., et al. (2008a). Mechanism of neuroprotection by donepezil pretreatment in rat cortical neurons chronically treated with donepezil. Journal of Neuroscience Research, 86, 3575–3583.CrossRefPubMedGoogle Scholar
  31. Takada-Takatori, Y., Kume, T., Ohgi, Y., Fujii, T., Niidome, T., Sugimoto, H., et al. (2008b). Mechanisms of alpha7-nicotinic receptor up-regulation and sensitization to donepezil induced by chronic donepezil treatment. European Journal of Pharmacology, 20, 150–156.CrossRefGoogle Scholar
  32. Takada-Takatori, Y., Kume, T., Izumi, Y., Ohgi, Y., Niidome, T., Fujii, T., et al. (2009). Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biological and Pharmaceutical Bulletin, 32, 318–324.CrossRefPubMedGoogle Scholar
  33. Tamura, Y., Sato, Y., Akaike, A., & Shiomi, H. (1992). Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Research, 592, 317–325.CrossRefPubMedGoogle Scholar
  34. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & Delon, M. R. (1982). Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239.CrossRefPubMedGoogle Scholar
  35. Zhou, J., Fu, Y., & Tang, X. C. (2001). Huperzine A and donepezil protect rat phenochromocytoma cells against oxygen-glucose deprivation. Neuroscience Letters, 406, 53–56.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Akinori Akaike
    • 1
    Email author
  • Yuki Takada-Takatori
    • 2
  • Toshiaki Kume
    • 1
  • Yasuhiko Izumi
    • 1
  1. 1.Department of Pharmacology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Pharmacology, Faculty of Pharmaceutical SciencesDoshisha Women’s CollegeKyotoJapan

Personalised recommendations