Advertisement

Journal of Molecular Neuroscience

, Volume 40, Issue 1–2, pp 185–195 | Cite as

Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

  • Sharon Mexal
  • Ralph Berger
  • Judy Logel
  • Randal G. Ross
  • Robert Freedman
  • Sherry Leonard
Article

Abstract

The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the α7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

Keywords

Nicotinic receptor Schizophrenia Smoking Gene expression α7 CHRNA7 

Notes

Acknowledgements

This work was supported by the National Institute on Drug Abuse (NIDA) DA09457, the National Institute on Mental Health (NIMH) MH081177 and MH068582, and the Veterans Affairs Medical Research Service. We are grateful to Bernadette Sullivan and Katy Walton for technical assistance.

References

  1. Abecasis, G. R., & Cookson, W. O. C. (2000). GOLD—Graphical Overview of Linkage Disequilibrium. Bioinformatics, 16, 182–183.CrossRefPubMedGoogle Scholar
  2. Adler, L. E., Waldo, M. C., Nagamoto, H. T., Baker, N., Franks, R., Bickford-Wimer, P. C., et al. (1991). 10 Years of studies on P50 sensory gating - A review and considerations for future studies. Schizophrenia Research, 4, 329.CrossRefGoogle Scholar
  3. Adler, L. E., Hoffer, L. D., Wiser, A., & Freedman, R. (1993). Normalization of auditory physiology by cigarette smoking in schizophrenic patients. American Journal of Psychiatry, 150, 1856–1861.PubMedGoogle Scholar
  4. Adler, L. E., Olincy, A., Waldo, M. C., Harris, J. G., Griffith, J., Stevens, K., et al. (1998). Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin, 24, 189–202.PubMedGoogle Scholar
  5. Albuquerque, E. X., Pereira, E. F., Braga, M. F., Matsubayashi, H., & Alkondon, M. (1998). Neuronal nicotinic receptors modulate synaptic function in the hippocampus and are sensitive to blockade by the convulsant strychnine and by the anti-Parkinson drug amantadine. Toxicology Letters, 102–103, 211–218.CrossRefPubMedGoogle Scholar
  6. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Arlington: American Psychiatric Association.Google Scholar
  7. Blount, P., & Merlie, J. P. (1991). BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. Journal of Cell Biology, 113, 1125–1132.CrossRefPubMedGoogle Scholar
  8. Breese, C. R., Lee, M. J., Adams, C. E., Sullivan, B., Logel, J., Gillen, K. M., et al. (2000). Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology, 23, 351–364.CrossRefPubMedGoogle Scholar
  9. Chang, W., Gelman, M. S., & Prives, J. M. (1997). Calnexin-dependent enhancement of nicotinic acetylcholine receptor assembly and surface expression. Journal of Biological Chemistry, 272, 28925–28932.CrossRefPubMedGoogle Scholar
  10. Christianson, J. C., & Green, W. N. (2004). Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO Journal, 23, 4156–4165.CrossRefPubMedGoogle Scholar
  11. Cooper, S. T., & Millar, N. S. (1997). Host cell-specific folding and assembly of the neuronal nicotinic acetylcholine receptor a7. Journal of Neurochemistry, 68, 2140–2151.PubMedCrossRefGoogle Scholar
  12. Cooper, E., Couturier, S., & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature, 350, 235–238.CrossRefPubMedGoogle Scholar
  13. Court, J., Spurden, D., Lloyd, S., McKeith, I., Ballard, C., Cairns, N., et al. (1999). Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: Alpha-bungarotoxin and nicotine binding in the thalamus. Journal of Neurochemistry, 73, 1590–1597.CrossRefPubMedGoogle Scholar
  14. Dalack, G. W., Healy, D. J., & Meador-Woodruff, J. H. (1998). Nicotine dependence in schizophrenia: Clinical phenomena and laboratory findings. American Journal of Psychiatry, 155, 1490–1501.PubMedGoogle Scholar
  15. de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76, 135–157.CrossRefPubMedGoogle Scholar
  16. De Luca, V., Wong, A. H. C., Muller, D. J., Wong, G. W. H., Tyndale, R. F., & Kennedy, J. L. (2004). Evidence of association between smoking and alpha 7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology, 29, 1522–1526.CrossRefPubMedGoogle Scholar
  17. Drisdel, R. C., Manzana, E., & Green, W. N. (2004). The role of palmitoylation in functional expression of nicotinic alpha7 receptors. Journal of Neuroscience, 24, 10502–10510.CrossRefPubMedGoogle Scholar
  18. Endicott, J., Andreasen, N. C., & Spitzer, R. L. (1978). Family History-Research Diagnostic Criteria, Research Assessment and Training Unit, New York State Psychiatric Institute, NY.Google Scholar
  19. Ficklin, M. B., Zhao, S., & Feng, G. (2005). Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. Journal of Biological Chemistry, 280, 34088–34095.CrossRefPubMedGoogle Scholar
  20. First, M. B., Gibbon, M., Spitzer, R. L., & Williams, J. B. W. (1996). Structured clinical interview for axis I DSM-IV disorders-non-patient edition (SCID-I/NP, Version 2.0). New York: Biometrics Research.Google Scholar
  21. Freedman, R., Hall, M., Adler, L. E., & Leonard, S. (1995). Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biological Psychiatry, 38, 22–33.CrossRefPubMedGoogle Scholar
  22. Freedman, R., Coon, H., MylesWorsley, M., OrrUrtreger, A., Olincy, A., Davis, A., et al. (1997). Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the United States of America, 94, 587–592.CrossRefPubMedGoogle Scholar
  23. Freedman, R., Adler, L. E., & Leonard, S. (1999). Alternative phenotypes for the complex genetics of schizophrenia. Biological Psychiatry, 45, 551–558.CrossRefPubMedGoogle Scholar
  24. Freedman, R., Leonard, S., Olincy, A., Kaufmann, C. A., Malaspina, D., Cloninger, C. R., et al. (2001). Evidence for the multigenic inheritance of schizophrenia. American Journal of Medical Genetics, 105, 794–800.CrossRefPubMedGoogle Scholar
  25. Freedman, R., Olincy, A., Buchanan, R. W., Harris, J. G., Gold, J. M., Johnson, L., et al. (2008). Initial phase 2 trial of a nicotinic agonist in schizophrenia. American Journal of Psychiatry, 165(8), 1040–1047.CrossRefPubMedGoogle Scholar
  26. Gault, J., Robinson, M., Berger, R., Drebing, C., Logel, J., Hopkins, J., et al. (1998). Genomic organization and partial duplication of the human a7 neuronal nicotinic acetylcholine receptor gene. Genomics, 52, 173–185.CrossRefPubMedGoogle Scholar
  27. Gault, J., Hopkins, J., Berger, R., Drebing, C., Logel, J., Walton, K., et al. (2003). Comparison of polymorphisms in the a7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. American Journal of Medical Genetics, 123B, 39–49.CrossRefPubMedGoogle Scholar
  28. George, T. P., & Krystal, J. H. (2000). Comorbidity of psychiatric and substance abuse disorders. Current Opinion in Psychiatry, 13, 327–331.CrossRefGoogle Scholar
  29. George, T. P., Vessicchio, J. C., Termine, A., Sahady, D. M., Head, C. A., Pepper, W. T., et al. (2002). Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology, 26, 75–85.CrossRefPubMedGoogle Scholar
  30. Grady, S., Marks, M. J., Wonnacott, S., & Collins, A. C. (1992). Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. Journal of Neurochemistry, 59, 848–856.CrossRefPubMedGoogle Scholar
  31. Green, W. N., & Millar, N. S. (1995). Ion-channel assembly. Trends in Neurosciences, 18, 280–287.CrossRefPubMedGoogle Scholar
  32. Guan, Z. Z., Zhang, X., Blennow, K., & Nordberg, A. (1999). Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. NeuroReport, 10, 1779–1782.CrossRefPubMedGoogle Scholar
  33. Guo, J. Z., Tredway, T. L., & Chiappinelli, V. A. (1998). Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. Journal of Neuroscience, 18, 1963–1969.PubMedGoogle Scholar
  34. Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10, 40–68.CrossRefPubMedGoogle Scholar
  35. Holzman, P. S., Proctor, L. R., & Hughes, D. W. (1973). Eye-tracking patterns in schizophrenia. Science, 181, 179–181.CrossRefPubMedGoogle Scholar
  36. Hope, B. T., Nagarkar, D., Leonard, S., & Wise, R. A. (2007). Long-term upregulation of protein kinase a and adenylate cyclase levels in human smokers. Journal of Neuroscience, 27, 1964–1972.CrossRefPubMedGoogle Scholar
  37. Jeanclos, E. M., Lin, L., Treuil, M. W., Rao, J., DeCoster, M. A., & Anand, R. (2001). The chaperone protein 14–3-3 eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit - Evidence for a dynamic role in subunit stabilization. Journal of Biological Chemistry, 276, 28281–28290.CrossRefPubMedGoogle Scholar
  38. Jones, I. W., & Wonnacott, S. (2004). Precise localization of alpha 7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. Journal of Neuroscience, 24, 11244–11252.CrossRefPubMedGoogle Scholar
  39. Kaiser, S., & Wonnacott, S. (2000). alpha-Bungarotoxin-sensitive nicotinic receptors indirectly modulate [H-3]dopamine release in rat striatal slices via glutamate release. Molecular Pharmacology, 58, 312–318.PubMedGoogle Scholar
  40. Kaufmann, C. A., Suarez, B., Malaspina, D., Pepple, J., Svrakic, D., Markel, P. D., et al. (1998). NIMH genetics initiative millenium schizophrenia consortium: linkage analysis of African-American pedigrees. American Journal of Medical Genetics, 81, 282–289.CrossRefPubMedGoogle Scholar
  41. Keller, S. H., & Taylor, P. (1999). Determinants responsible for assembly of the nicotinic acetylcholine receptor. Journal of General Physiology, 113, 171–176.CrossRefPubMedGoogle Scholar
  42. Kristiansen, L. V., & Meador-Woodruff, J. H. (2005). Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophrenia Research, 78, 87–93.PubMedGoogle Scholar
  43. Kuehn, B. M. (2006). Link between smoking and mental illness may lead to treatments. Jama-Journal of the American Medical Association, 295, 483–484.CrossRefGoogle Scholar
  44. Kumari, V., & Postma, P. (2005). Nicotine use in schizophrenia: The self medication hypotheses. Neuroscience and Biobehavioral Reviews, 29, 1021.CrossRefPubMedGoogle Scholar
  45. Leonard, S. (2003). Consequences of low levels of nicotinic acetylcholine receptors in schizophrenia for drug development. Drug Development Research, 60, 127–136.CrossRefGoogle Scholar
  46. Leonard, S., & Bertrand, D. (2001). Neuronal nicotinic receptors: From structure to function. Nicotine & Tobacco Research, 3, 203–223.CrossRefGoogle Scholar
  47. Leonard, S., Logel, J., Luthman, D., Casanova, M., Kirch, D., & Freedman, R. (1993). Biological stability of mRNA isolated from human postmortem brain collections. Biological Psychiatry, 33, 456–466.CrossRefPubMedGoogle Scholar
  48. Leonard, S., Gault, J., Moore, T., Hopkins, J., Robinson, M., Olincy, A., et al. (1998). Further investigation of a chromosome 15 locus in schizophrenia: Analysis of affected sibpairs from the NIMH genetics initiative. American Journal of Medical Genetics, 81, 308–312.CrossRefPubMedGoogle Scholar
  49. Leonard, S., Adler, L. E., Benhammou, K., Berger, R., Breese, C. R., Drebing, C., et al. (2001). Smoking and mental illness. Pharmacology, Biochemistry and Behavior, 70, 561–570.CrossRefGoogle Scholar
  50. Leonard, S., Gault, J., Hopkins, J., Logel, J., Vianzon, R., Short, M., et al. (2002). Association of promoter variants in the alpha 7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Archives of General Psychiatry, 59, 1085–1096.CrossRefPubMedGoogle Scholar
  51. Leonard, S., Berger, R., Mexal, S., Walton, K., & Freedman, R. (2005). Comparison of gene expression in human cultured skin fibroblasts and postmortem brain: Neuregulin-1 expression is decreased in primary skin fibroblasts of schizophrenic subjects. Online, Program No. 815.7 Abstract Viewer/Itinerary Planner Society for Neuroscience.Google Scholar
  52. Leonard, S., Mexal, S., Berger, R., Olincy, A., & Freedman, R. (2007). Smoking and schizophrenia: Evidence for self medication. Schizophrenia Bulletin, 33, 262–263.Google Scholar
  53. Levin, E. D., Bettegowda, C., Blosser, J., & Gordon, J. (1999). AR-R17779, an alpha 7 nicotinic agonist, improves learning and memory in rats. Behavioural Pharmacology, 10, 675–680.CrossRefPubMedGoogle Scholar
  54. Levin, E. D., McClernon, F. J., & Rezvani, A. H. (2006). Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology, 184, 523–539.CrossRefPubMedGoogle Scholar
  55. Levy, R. B., & Aoki, C. (2002). alpha 7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. Journal of Neuroscience, 22, 5001–5015.PubMedGoogle Scholar
  56. Levy, D. L., Holzman, P. S., Matthysse, S., & Mendell, N. R. (1993). Eye tracking dysfunction and schizophrenia - a critical perspective. Schizophrenia Bulletin, 19, 461–536.PubMedGoogle Scholar
  57. Li, J. Z., Vawter, M. P., Walsh, D. M., Tomita, H., Evans, S. J., Choudary, P. V., et al. (2004). Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Human Molecular Genetics, 13, 609–616.CrossRefPubMedGoogle Scholar
  58. Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. [Review] [135 refs]. Molecular Neurobiology, 15, 193–222.CrossRefPubMedGoogle Scholar
  59. Liu, C. M., Hwu, H. G., Lin, M. W., Ou-Yang, W. C., Lee, S. F. C., Fann, C. S. J., et al. (2001). Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13–14 in Taiwanese families. American Journal of Medical Genetics, 105, 658–661.CrossRefPubMedGoogle Scholar
  60. MacDermott, A. B., Role, L. W., & Siegelbaum, S. A. (1999). Presynaptic ionotropic receptors and the control of transmitter release [Review]. Annual Review of Neuroscience, 22, 443–485.CrossRefPubMedGoogle Scholar
  61. Maggi, L., Le Magueresse, C., Changeux, J. P., & Cherubini, E. (2003). Nicotine activates immature "silent" connections in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 100, 2059–2064.CrossRefPubMedGoogle Scholar
  62. Marks, M. J., Stitzel, J. A., & Collins, A. C. (1986). A dose-response analysis of nicotine tolerance and receptor changes in two inbred mouse strains. Journal of Pharmacology and Experimental Therapeutics, 239, 358–364.PubMedGoogle Scholar
  63. Marutle, A., Zhang, X., Court, J., Piggott, M., Johnson, M., Perry, R., et al. (2001). Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. Journal of Chemical Neuroanatomy, 22, 115–126.CrossRefPubMedGoogle Scholar
  64. Mexal, S., Frank, M., Berger, R., Adams, C. E., Ross, R. G., Freedman, R., et al. (2005). Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Molecular Brain Research, 139, 317–332.CrossRefPubMedGoogle Scholar
  65. Mexal, S., Berger, R., Adams, C. E., Ross, R. G., Freedman, R., & Leonard, S. (2006). Brain pH has a significant impact on human postmortem hippocampal gene expression profiles. Brain Research, 1106, 1–11.CrossRefPubMedGoogle Scholar
  66. Mexal, S., Berger, R., Pearce, L., Barton, A., Logel, J., Adams, C. E., et al. (2007). Regulation of a novel aN-catenin splice variant in schizophrenic smokers. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(6), 759–768.CrossRefGoogle Scholar
  67. Nicke, A., Thurau, H., Sadtler, S., Rettinger, J., & Schmalzing, G. (2004). Assembly of nicotinic alpha7 subunits in Xenopus oocytes is partially blocked at the tetramer level. FEBS Letters, 575, 52–58.CrossRefPubMedGoogle Scholar
  68. Olincy, A., Young, D. A., & Freedman, R. (1997). Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biological Psychiatry, 42, 1–5.CrossRefPubMedGoogle Scholar
  69. Olincy, A., Ross, R. G., Young, D. A., Roath, M., & Freedman, R. (1998). Improvement in smooth pursuit eye movements after cigarette smoking in schizophrenic patients. Neuropsychopharmacology, 18, 175–185.CrossRefPubMedGoogle Scholar
  70. Olincy, A., Johnson, L. L., & Ross, R. G. (2003). Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiatry Research, 117, 223–236.CrossRefPubMedGoogle Scholar
  71. Olincy, A., Harris, J. G., Johnson, L. L., Pender, V., Kongs, S., Allensworth, D., et al. (2006). Proof-of-concept trial of an alpha 7 nicotinic agonist in schizophrenia. Archives of General Psychiatry, 63, 630–638.CrossRefPubMedGoogle Scholar
  72. Ren, X. Q., Cheng, S. B., Treuil, M. W., Mukherjee, J., Rao, J., Braunewell, K. H., et al. (2005). Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. Journal of Neuroscience, 25, 6676–6686.CrossRefPubMedGoogle Scholar
  73. Riley, B. P., Makoff, A. M., Magudi-Carter, M., Jenkins, T. J., Williamson, R., Collier, D. A., et al. (2000). Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. American Journal of Medical Genetics, 96, 196–201.CrossRefPubMedGoogle Scholar
  74. Riley, B., Williamson, M., Collier, D., Wilkie, H., & Makoff, A. (2002). A 3-Mb map of a large segmental duplication overlapping the alpha 7-nicotinic acetylcholine receptor gene (CHRNA7) at human 15q13–q14. Genomics, 79, 197–209.CrossRefPubMedGoogle Scholar
  75. Ross, R. G., Olincy, A., Harris, J. G., Radant, A., Adler, L. E., & Freedman, R. (1998). Anticipatory saccades during smooth pursuit eye movements and familial transmission of schizophrenia. Biological Psychiatry, 44, 690–697.CrossRefPubMedGoogle Scholar
  76. Rousseau, S. J., Jones, I. W., Pullar, I. A., & Wonnacott, S. (2005). Presynaptic alpha 7 and non-alpha 7 nicotinic acetylcholine receptors modulate [H-3]D-aspartate release from rat frontal cortex in vitro. Neuropharmacology, 49, 59–72.CrossRefPubMedGoogle Scholar
  77. Sallette, J., Bohler, S., Benoit, P., Soudant, M., Pons, S., Le Novere, N., et al. (2004). An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. Journal of Biological Chemistry, 279, 18767–18775.CrossRefPubMedGoogle Scholar
  78. Sallette, J., Pons, S., Devillers-Thiery, A., Soudant, M., Prado de Carvalho, L., Changeux, J. P., et al. (2005). Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron, 46, 595–607.CrossRefPubMedGoogle Scholar
  79. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  80. Shoop, R. D., Martone, M. E., Yamada, N., Ellisman, M. H., & Berg, D. K. (1999). Neuronal acetylcholine receptors with alpha7 subunits are concentrated on somatic spines for synaptic signaling in embryonic chick ciliary ganglia. Journal of Neuroscience, 19, 692–704.PubMedGoogle Scholar
  81. Simosky, J. K., Stevens, K. E., Kern, W. R., & Freedman, R. (2001). Intragastric DMXB-A, an alpha 7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biological Psychiatry, 50, 493–500.CrossRefPubMedGoogle Scholar
  82. Stevens, K. E., Kem, W. R., Mahnir, V. M., & Freedman, R. (1998). Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology, 136, 320–327.CrossRefPubMedGoogle Scholar
  83. Stöber, G., Saar, K., Rüschendorf, F., Meyer, J., Nürnberg, G., Jatzke, S., et al. (2000). Splitting schizophrenia: Periodic catatonia-susceptibility locus on chromosome 15q15. American Journal of Human Genetics, 67, 1201–1207.PubMedGoogle Scholar
  84. Tsuang, D. W., Skol, A. D., Faraone, S. V., Bingham, S., Young, K. A., Prabhudesai, S., et al. (2001). Examination of genetic linkage of chromosome 15 to schizophrenia in a large veterans affairs cooperative study sample. American Journal of Medical Genetics, 105, 662–668.CrossRefPubMedGoogle Scholar
  85. Vijayaraghavan, S., Pugh, P. C., Zhang, Z.-W., Rathouz, M. M., & Berg, D. K. (1992). Nicotinic receptors that bind a-bungarotoxin on neurons raise intracellular free Ca++. Neuron, 8, 353–362.CrossRefPubMedGoogle Scholar
  86. Wanamaker, C. P., Christianson, J. C., & Green, W. N. (2003). Regulation of nicotinic acetylcholine receptor assembly. Annals of the New York Academy of Sciences, 998, 66–80.CrossRefPubMedGoogle Scholar
  87. Weiser, M., Levin, E. D., George, T. P., Newhouse, P. A., & Leonard, S. (2004). Nicotinic receptor modulation of attention: An endophenotype for therapeutic drug development. Biological Psychiatry, 55, 152S–152S.Google Scholar
  88. Williams, M. E., Burton, B., Urrutia, A., Shcherbatko, A., Chavez-Noriega, L. E., Cohen, C. J., et al. (2005). Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. Journal of Biological Chemistry, 280, 1257–1263.CrossRefPubMedGoogle Scholar
  89. Wonnacott, S. (1986). a-Bungarotoxin binds to low-affinity nicotine binding sites in rat brain. Journal of Neurochemistry, 47, 1706–1712.CrossRefPubMedGoogle Scholar
  90. Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. [Review] [76 refs]. Trends in Neurosciences, 20, 92–98.CrossRefPubMedGoogle Scholar
  91. Wonnacott, S., Sidhpura, N., & Balfour, D. J. K. (2005). Nicotine: from molecular mechanisms to behaviour. Current Opinion in Pharmacology, 5, 53–59.CrossRefPubMedGoogle Scholar
  92. Xu, J. Z., Pato, M. T., Dalla Torre, C., Medeiros, H., Carvalho, C., Basile, V. S., et al. (2001). Evidence for linkage disequilibrium between the alpha 7- nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. American Journal of Medical Genetics, 105, 669–674.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Sharon Mexal
    • 3
  • Ralph Berger
    • 1
  • Judy Logel
    • 1
  • Randal G. Ross
    • 1
  • Robert Freedman
    • 1
    • 2
  • Sherry Leonard
    • 1
    • 2
  1. 1.Department of PsychiatryUniversity of Colorado DenverAuroraUSA
  2. 2.The Veterans Affairs Medical Research ServiceDenverUSA
  3. 3.Cenomed BioSciencesIrvineUSA

Personalised recommendations