Journal of Molecular Neuroscience

, Volume 40, Issue 3, pp 284–294 | Cite as

Integrin-Linked Kinase Is Involved in Cocaine Sensitization by Regulating PSD-95 and Synapsin I Expression and GluR1 Ser845 Phosphorylation

  • Qiang Chen
  • Xiongzhao Zhu
  • Yu Zhang
  • William C. Wetsel
  • Tong H. Lee
  • Xiuwu Zhang


Our recent studies have demonstrated that integrin-linked kinase (ILK) is involved in the induction and maintenance of cocaine behavioral sensitization and chronic cocaine-induced neural plasticity in the nucleus accumbens (NAc) core. In the present study, we used ILK silencing to investigate how ILK may influence cocaine-induced neural plasticity. Adeno-associated virus carrying a small interfering RNA-ILK cassette under the control of an inducible Tet-On system was injected into the NAc core of Sprague–Dawley rats. Induced silencing was established during repeated cocaine injections (sensitization induction period) or between withdrawal days 9 and 22 (sensitization maintenance period). Under both paradigms, established cocaine sensitization under non-silenced conditions was associated with enhanced PSD-95 and synapsin I protein expression as well as enhanced Ser845 phosphorylation of the GluR1 subunit on withdrawal day. Silencing ILK expression under both paradigms prevented or reversed these changes. Importantly, ILK appears to form a complex with PSD-95 and synapsin I because it co-immunoprecipitated with each of these proteins. Together, these data suggest that ILK exerts pleiotropic actions by regulating pre- and postsynaptic neural plasticities within the NAc core in response to repeated cocaine exposure.


Integrin-linked kinase Cocaine Behavioral sensitization PSD-95 SiRNA GluR1 Synapsin I Synaptic plasticity 


  1. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  2. Brakebusch, C., & Fässler, R. (2003). The integrin–actin connection, an eternal love affair. EMBO Journal, 22, 2324–2333.CrossRefPubMedGoogle Scholar
  3. Carlezon, W. A., & Nestler, E. J. (2002). Elevated levels of GluR1 in the midbrain: A trigger for sensitization to drugs of abuse? Trends in Neuroscience, 25, 610–615.CrossRefGoogle Scholar
  4. Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., et al. (2000). Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature, 408, 936–943.CrossRefPubMedGoogle Scholar
  5. Chen, Q., Xiong, X., Lee, T., Liu, Y., Wetsel, W., & Zhang, X. (2008a). Neural plasticity and addiction: Integrin-linked kinase and cocaine sensitization. Journal of Neurochemistry, 107, 679–689.CrossRefPubMedGoogle Scholar
  6. Chen, Q., Xiong, X., Lee, T., Liu, Y., Sun, Q., Wetsel, W., et al. (2008b). Adeno-associated virus-mediated ILK gene silencing in the rat NAc core. Journal of Neuroscience Methods, 173, 208–214.CrossRefPubMedGoogle Scholar
  7. Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A., & Vartanian, T. (2003). Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. Journal of Cell Biology, 163, 397–408.CrossRefPubMedGoogle Scholar
  8. Cordes, N. (2004). Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cancer Research, 64, 5683-5692.CrossRefPubMedGoogle Scholar
  9. Davidson, C., Lee, T. H., Xiong, Z., & Ellinwood, E. H. (2002). Ondansetron given in the acute withdrawal from a repeated cocaine sensitization dosing regimen reverses the expression of sensitization and inhibits self-administration. Neuropsychopharmacology, 27, 542–553.PubMedGoogle Scholar
  10. Dedhar, S. (2000). Cell–substrate interactions and signaling through ILK. Current Opinion in Cell Biology, 12, 250–256.CrossRefPubMedGoogle Scholar
  11. Dobreva, I., Fielding, A., Foster, L. J., & Dedhar, S. (2008). Mapping the integrin-linked kinase interactome using SILAC. Journal of Proteome Research, 7, 1740–1749.CrossRefPubMedGoogle Scholar
  12. Ehrlich, I., & Malinow, R. (2004). Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. Journal of Neuroscience, 24, 916–927.CrossRefPubMedGoogle Scholar
  13. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., & Bredt, D. S. (2000). PSD-95 involvement in maturation of excitatory synapses. Science, 290, 1364–1368.PubMedGoogle Scholar
  14. Elias, G. M., Elias, L. A., Apostolides, P. F., Kriegstein, A. R., & Nicoll, R. A. (2008). Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proceedings of the National Academy of Sciences of the United States of America, 105, 20953–209538.CrossRefPubMedGoogle Scholar
  15. Ferreira, A., & Rapoport, M. (2002). The synapsins: beyond the regulation of neurotransmitter release. Cellular and Molecular Life Sciences, 59, 589–595.CrossRefPubMedGoogle Scholar
  16. Hannigan, G., Troussard, A. A., & Dedhar, S. (2005). Integrin-linked kinase: A cancer therapeutic target unique among its ILK. Nature Reviews Cancer, 5, 51–63.CrossRefPubMedGoogle Scholar
  17. Hay, N. (2005). The Akt-mTOR tango and its relevance to cancer. Cancer Cell, 8, 179–183.CrossRefPubMedGoogle Scholar
  18. Hilfiker, S., Pieribone, V. A., Czernik, A. J., Kao, H. T., Augustine, G. J., & Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society of London. B Biological Sciences, 354, 269–279.CrossRefGoogle Scholar
  19. Ishii, T., Furuoka, H., Muroi, Y., & Nishimura, M. (2003). Inactivation of integrin-linked kinase induces aberrant tau phosphorylation via sustained activation of glycogen synthase kinase 3β in N1E-115 neuroblastoma cells. Journal of Biological Chemistry, 278, 26970–26975.CrossRefPubMedGoogle Scholar
  20. Johnson, O. L., & Ouimet, C. C. (2006). A regulatory role for actin in dendritic spine proliferation. Brain Research, 1113, 1–9.CrossRefPubMedGoogle Scholar
  21. Jovanovic, J. N., Sihra, T. S., Nairn, A. C., Hemmings, H. C., Jr., Greengard, P., & Czernik, A. J. (2001). Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. Journal of Neuroscience, 21, 7944–7953.PubMedGoogle Scholar
  22. Kaeberlein, M., & Kennedy, B. K. (2007). Protein translation, 2007. Aging Cell, 6, 731–734.CrossRefPubMedGoogle Scholar
  23. Kennedy, M. B. (1997). The postsynaptic density at glutamatergic synapses. Trends in Neuroscience, 20, 264–268.CrossRefGoogle Scholar
  24. Kim, E., & Sheng, M. (2004). PDZ domain proteins of synapses. Nature Reviews Neuroscience, 5, 771–781.CrossRefPubMedGoogle Scholar
  25. Kolb, B., Gorny, G., Li, Y., Samaha, A. N., & Robinson, T. E. (2003). Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 100, 10523–10528.CrossRefPubMedGoogle Scholar
  26. Kornau, H. C., Schenker, L. T., Kennedy, M. B., & Seeburg, P. H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 269, 1737–1740.CrossRefPubMedGoogle Scholar
  27. Kumar, A. S., Naruszewicz, I., Wang, P., Leung-Hagesteijn, C., Hannigan, G. E. (2004). ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene, 23, 3454-3461.CrossRefPubMedGoogle Scholar
  28. Li, Y., Kolb, B., & Robinson, T. E. (2003). The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology, 238, 1082–1085.Google Scholar
  29. Lin, S. W., Ke, F. C., Hsiao, P. W., Lee, P. P., Lee, M. T., & Hwang, J. J. (2007). Critical involvement of ILK in TGFbeta1-stimulated invasion/migration of human ovarian cancer cells is associated with urokinase plasminogen activator system. Experimental Cell Research, 313, 602–613.CrossRefPubMedGoogle Scholar
  30. Liu, Y., Sun, Q. A., Chen, Q., Lee, T. H., Huang, Y., Wetsel, W. C., et al. (2009). Targeting inhibition of GluR1 Ser845 phosphorylation with an RNA aptamer that blocks AMPA receptor trafficking. Journal of Neurochemistry, 108, 147–157.CrossRefPubMedGoogle Scholar
  31. Mavrakis, M., Lippincott-Schwartz, L., Stratakis, C. A., & Bossis, I. (2007). mTOR kinase and the regulatory subunit of protein kinase A (PRKAR1A) spatially and functionally interact during autophagosome maturation. Autophagy, 3, 151–153.PubMedGoogle Scholar
  32. McDonald, P. C., Oloumi, A., Mills, J., Dobreva, I., Maidan, M., Gray, V., et al. (2008). Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Research, 68, 1618–1624.CrossRefPubMedGoogle Scholar
  33. Mulholland, P. J., & Chandler, L. J. (2007). The thorny side of addiction: Adaptive plasticity and dendritic spines. Scientific World Journal, 7, 9–21.PubMedGoogle Scholar
  34. Nho, R. S., Xia, H., Kahm, J., Kleidon, J., Diebold, D., Henke, C. A. (2005). Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway. Journal of Biological Chemestry, 280, 26630-26639.CrossRefGoogle Scholar
  35. Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., & Greengard, P. (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 116, 19–22.CrossRefPubMedGoogle Scholar
  36. Prange, O., & Murphy, T. H. (2001). Modular transport of postsynaptic density-95 clusters and association with stable spine precursors during early development of cortical neurons. Journal of Neuroscience, 21, 9325–9333.PubMedGoogle Scholar
  37. Robinson, T. E., & Kolb, B. (1997). Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. Journal of Neuroscience, 17, 8491–8497.PubMedGoogle Scholar
  38. Robinson, T. E., & Kolb, B. (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. European Journal of Neuroscience, 11, 1598–1604.CrossRefPubMedGoogle Scholar
  39. Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47, 33–46.CrossRefPubMedGoogle Scholar
  40. Robinson, T. E., Gorny, G., Mitton, E., & Kolb, B. (2001). Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse, 39, 257–266.CrossRefPubMedGoogle Scholar
  41. Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., & Huganir, R. L. (1996). Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron, 16, 1179–1188.CrossRefPubMedGoogle Scholar
  42. Sekino, Y., Kojima, N., & Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochemistry International, 51, 92–104.CrossRefPubMedGoogle Scholar
  43. Tan, C., Cruet-Hennequart, S., Troussard, A., Fazli, L., Costello, P., Sutton, K., et al. (2004). Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell, 5, 79-90.CrossRefPubMedGoogle Scholar
  44. Vessey, J. P., & Karra, D. (2007). More than just synaptic building blocks: Scaffolding proteins of the post-synaptic density regulate dendritic patterning. Journal of Neurochemistry, 102, 324–332.CrossRefPubMedGoogle Scholar
  45. Wolf, M. E. (2002). Addiction: Making the connection between behavioral changes and neuronal plasticity in specific pathways. Molecular Interventions, 2, 146–157.CrossRefPubMedGoogle Scholar
  46. Wu, C. (2004). The PINCH-ILK-parvin complexes: Assembly, functions and regulation. Biochimica et Biophysica Acta, 1692, 55–62.PubMedGoogle Scholar
  47. Yamagata, Y. (2003). New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. Journal Pharmacological Sciences, 293, 22-29.CrossRefGoogle Scholar
  48. Yamamoto, H., Matsumoto, K., Araki, E., & Miyamoto, E. (2003). New aspects of neurotransmitter release and exocytosis: Involvement of Ca2+/calmodulin-dependent phosphorylation of synapsin I in insulin exocytosis. Journal of Pharmacological Sciences, 93, 30–34.CrossRefPubMedGoogle Scholar
  49. Yao, W. D., Gainetdinov, R. R., Arbuckle, M. I., Sotnikova, T. D., Cyr, M., Beaulieu, J. M., et al. (2004). Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron, 41, 625–638.CrossRefPubMedGoogle Scholar
  50. Zhang, X., Li, Y., Huang, Q., Wang, H., Yan, B., Dewhirst, M. W., et al. (2003). Increased resistance of tumor cells to hyperthermia mediated by integrin-linked kinase. Clinical Cancer Research, 9, 1155–1160.PubMedGoogle Scholar
  51. Zhang, X., Lee, T. H., Davidson, C., Lazarus, C., Wetsel, W. C., & Ellinwood, E. H. (2007). Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of NR2B and GluR1 subunits of NMDA and AMPA receptors. Neuropsychopharmacology, 32, 377–387.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Qiang Chen
    • 1
  • Xiongzhao Zhu
    • 2
  • Yu Zhang
    • 1
  • William C. Wetsel
    • 1
    • 3
    • 4
  • Tong H. Lee
    • 1
  • Xiuwu Zhang
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  2. 2.Medical Psychological Research Center, Second XiangYa HospitalCentral South UniversityChangshaChina
  3. 3.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  4. 4.Department of Cell BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations