Journal of Molecular Neuroscience

, Volume 39, Issue 1–2, pp 27–39 | Cite as

Sema4C Expression in Neural Stem/Progenitor Cells and in Adult Neurogenesis Induced by Cerebral Ischemia

  • Haitao Wu
  • Jundie Fan
  • Lingling Zhu
  • Shuhong Liu
  • Yan Wu
  • Tong Zhao
  • Yanrui Wu
  • Xuefeng Ding
  • Wenhong Fan
  • Ming Fan


Sema4C is a transmembrane protein that belongs to axon guidance molecules of semaphorin family. Previous reports have shown that Sema4C could interact with postsynaptic protein PSD95, etc, but the expression and the role of Sema4C in neurogenesis remains unknown. In this study, whole-mount in situ hybridization result showed that Sema4C was expressed abundantly in the areas of lateral ventricle, the striatum, the wall of midbrain, and the pons/midbrain junction of E11.5 embryos brain. Neural stem/progenitor cells (NSPs) obtained from E13.5 embryonic rat midbrain are also positive for Sema4C immunoreactivity. Sema4C expression was dramatically downregulated during induction of NSP differentiation. In order to confirm the involvement of Sema4C in neurogenesis, we used the rat global cerebral ischemia model to make adult neurogenesis in vivo. The robust proliferative NSPs were monitored by labeling with bromodeoxyuridine (BrdU) within the subventricular zone and dentate gyrus that continues for at least 2 weeks. Immunohistochemistry and Western blot analysis showed that Sema4C expression was dramatically upregulated during neurogenesis after cerebral ischemia–perfusion injury. Double immunostaining and stereologic counting analysis indicated that a high proportion of BrdU-positive proliferative cells were Nestin-positive NSPs, and also, Sema4C was highly expressed in these proliferative populations at specific stages after ischemic injury. These observations provide the evidence to support a putative role of Sema4C during neurogenesis both in vivo and in vitro.


Sema4C Neural stem/progenitor cells Neurogenesis BrdU Ischemia–perfusion injury 



This work was supported by the National Natural Sciences Foundation of China (30800583, 30871030, and 30670792) and the Chinese National Hi-tech project (2006AA02A115). We greatly thank Kazusa DNA Research Institute for the generous gift of KIAA1739 (NM_017789) human cDNA clone.


  1. Altman, J., & Bayer, S. A. (1990). Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. The Journal of Comparative Neurology, 301, 365–381. doi: 10.1002/cne.903010304.PubMedCrossRefGoogle Scholar
  2. Banu, N., Teichman, J., Dunlap-Brown, M., Villegas, G., & Tufro, A. (2006). Semaphorin 3C regulates endothelial cell function by increasing integrin activity. The FASEB Journal, 20, 2150–2152. doi: 10.1096/fj.05-5698fje.PubMedCrossRefGoogle Scholar
  3. Barberis, D., Artigiani, S., Casazza, A., Corso, S., Giordano, S., Love, C. A., et al. (2004). Plexin signaling hampers integrin-based adhesion, leading to Rho-kinase independent cell rounding, and inhibiting lamellipodia extension and cell motility. The FASEB Journal, 18, 592–594.PubMedGoogle Scholar
  4. Brakebusch, C., & Fässler, R. (2003). The integrin–actin connection, an eternal love affair. The EMBO Journal, 22, 2324–2333. doi: 10.1093/emboj/cdg245.PubMedCrossRefGoogle Scholar
  5. Brazel, C. Y., Romanko, M. J., Rothstein, R. P., & Levison, S. W. (2003). Roles of the mammalian subventricular zone in brain development. Progress in Neurobiology, 69, 49–69. doi: 10.1016/S0301-0082(03)00002-9.PubMedCrossRefGoogle Scholar
  6. Conlon, R. A., & Rossant, J. (1992). Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development, 116, 357–368.PubMedGoogle Scholar
  7. Davis, A. A., & Temple, S. (1994). A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 372, 263–266. doi: 10.1038/372263a0.PubMedCrossRefGoogle Scholar
  8. De Winter, F., Vo, T., Stam, F. J., Wisman, L. A., Bär, P. R., Niclou, S. P., et al. (2006). The expression of the chemorepellent semaphorin3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Molecular and Cellular Neurosciences, 32, 102–117. doi: 10.1016/j.mcn.2006.03.002.PubMedCrossRefGoogle Scholar
  9. Eickholt, B. J., Mackenzie, S. L., Graham, A., Walsh, F. S., & Doherty, P. (1999). Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development, 126, 2181–2189.PubMedGoogle Scholar
  10. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438. doi: 10.1126/science.287.5457.1433.PubMedCrossRefGoogle Scholar
  11. Ginzburg, V. E., Roy, P. J., & Culotti, J. G. (2002). Semaphorin1a and semaphorin1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development, 129, 2065–2078.PubMedGoogle Scholar
  12. Goldberg, J. L., Vargas, M. E., Wang, J. T., Mandemakers, W., Oster, S. F., Sretavan, D. W., et al. (2004). An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. The Journal of Neuroscience, 24, 4989–4999. doi: 10.1523/JNEUROSCI.4390-03.2004.PubMedCrossRefGoogle Scholar
  13. Halloran, M. C., & Wolman, M. A. (2006). Repulsion or adhesion: receptors make the call. Current Opinion in Cell Biology, 18, 533–540. doi: 10.1016/ Scholar
  14. Huber, A. B., Kolodkin, A. L., Ginty, D. D., & Cloutier, J. F. (2003). Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Annual Review of Neuroscience, 26, 509–563. doi: 10.1146/annurev.neuro.26.010302.081139.PubMedCrossRefGoogle Scholar
  15. Inagaki, S., Furuyama, T., & Iwahashi, Y. (1995). Identification of a member of mouse semaphorin family. FEBS Letters, 370, 269–272. doi: 10.1016/0014-5793(95)00850-9.PubMedCrossRefGoogle Scholar
  16. Inagaki, S., Ohoka, Y., Sugimoto, H., Fujioka, S., Amazaki, M., Kurinami, H., et al. (2001). Sema4C, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. The Journal of Biological Chemistry, 276, 9174–9181. doi: 10.1074/jbc.M009051200.PubMedCrossRefGoogle Scholar
  17. Jin, K., Minami, M., Lan, J. Q., Mao, X. O., Batteur, S., Simon, R. P., et al. (2001). Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America, 98, 4710–4715. doi: 10.1073/pnas.081011098.PubMedCrossRefGoogle Scholar
  18. Kaplan, M. S., McNelly, N. A., & Hinds, J. W. (1985). Population dynamics of adult-formed granule neurons of the rat olfactory bulb. The Journal of Comparative Neurology, 239, 117–125. doi: 10.1002/cne.902390110.PubMedCrossRefGoogle Scholar
  19. Kaya, S. S., Mahmood, A., Li, Y., Yavuz, E., & Chopp, M. (1999). Expression of nestin after traumatic brain injury in rat brain. Brain Research, 840, 153–157. doi: 10.1016/S0006-8993(99)01757-6.CrossRefGoogle Scholar
  20. Kerjan, G., Dolan, J., Haumaitre, C., Schneider-Maunoury, S., Fujisawa, H., Mitchell, K. J., et al. (2005). The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nature Neuroscience, 8, 1516–1524. doi: 10.1038/nn1555.PubMedCrossRefGoogle Scholar
  21. Kilpatrick, T. J., Richards, L. J., & Bartlett, P. F. (1995). The regulation of neural precursor cells within the mammalian brain. Molecular and Cellular Neurosciences, 6, 2–15. doi: 10.1006/mcne.1995.1002.PubMedCrossRefGoogle Scholar
  22. Kiosses, W. B., Shattil, S. J., Pampori, N., & Schwartz, M. A. (2001). Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nature Cell Biology, 3, 316–320. doi: 10.1038/35060120.PubMedCrossRefGoogle Scholar
  23. Ko, J. A., Gondo, T., Inagaki, S., & Inui, M. (2005). Requirement of the transmembrane semaphorin Sema4C for myogenic differentiation. FEBS Letters, 579, 2236–2242. doi: 10.1016/j.febslet.2005.03.022.PubMedCrossRefGoogle Scholar
  24. Kobayashi, H., Koppel, A. M., Luo, Y., & Raper, J. A. (1997). A role for collapsin-1 in olfactory and cranial sensory axon guidance. The Journal of Neuroscience, 17, 8339–8352.PubMedGoogle Scholar
  25. Kolodkin, A. L., Matthes, D. J., & Goodman, C. S. (1993). The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell, 75, 1389–1399. doi: 10.1016/0092-8674(93)90625-Z.PubMedCrossRefGoogle Scholar
  26. Levison, S. W., & Goldman, J. E. (1993). Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron, 10, 201–212. doi: 10.1016/0896-6273(93)90311-E.PubMedCrossRefGoogle Scholar
  27. Levison, S. W., Young, G. M., & Goldman, J. E. (1999). Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research, 57, 435–446. doi: 10.1002/(SICI)1097-4547(19990815)57:4<435::AID-JNR3>3.0.CO;2-L.PubMedCrossRefGoogle Scholar
  28. Liu, Y., Berndt, J., Su, F., Tawarayama, H., Shoji, W., Kuwada, J. Y., & Halloran, M. C. (2004). Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum. The Journal of Neuroscience, 24, 310–318. doi: 10.1523/JNEUROSCI.4287-03.2004.PubMedCrossRefGoogle Scholar
  29. Luo, Y., Raible, D., & Raper, J. A. (1993). Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 75, 217–227. doi: 10.1016/0092-8674(93)80064-L.PubMedCrossRefGoogle Scholar
  30. Luskin, M. B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11, 173–189. doi: 10.1016/0896-6273(93)90281-U.PubMedCrossRefGoogle Scholar
  31. Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proceedings of the National Academy of Sciences of the United States of America, 101, 17528–17532. doi: 10.1073/pnas.0407893101.PubMedCrossRefGoogle Scholar
  32. Miyazaki, N., Furuyama, T., Amasaki, M., Sugimoto, H., Sakai, T., Takeda, N., et al. (1999). Mouse semaphorinH inhibits neurite outgrowth from sensory neurons. Neuroscience Research, 33, 269–274. doi: 10.1016/S0168-0102(99)00015-2.PubMedCrossRefGoogle Scholar
  33. Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., et al. (2003). The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. The Journal of Neuroscience, 23, 9229–9239.PubMedGoogle Scholar
  34. Ohoka, Y., Hirotani, M., Sugimoto, H., Fujioka, S., Furuyama, T., & Inagaki, S. (2001). Semaphorin 4C, a transmembrane semaphorin, associates with a neurite-outgrowth-related protein, SFAP75. Biochemical and Biophysical Research Communications, 280, 237–243. doi: 10.1006/bbrc.2000.4080.PubMedCrossRefGoogle Scholar
  35. Oster, S. F., Bodeker, M. O., He, F., & Sretavan, D. W. (2003). Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development, 130, 775–784. doi: 10.1242/dev.00299.PubMedCrossRefGoogle Scholar
  36. Palmer, T. D., Ray, J., & Gage, F. H. (1995). FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Molecular and Cellular Neurosciences, 6, 474–486. doi: 10.1006/mcne.1995.1035.PubMedCrossRefGoogle Scholar
  37. Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N., & Ferriero, D. M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Annals of Neurology, 52, 802–813. doi: 10.1002/ana.10393.PubMedCrossRefGoogle Scholar
  38. Pasterkamp, R. J., & Kolodkin, A. L. (2003). Semaphorin junction: making tracks towards neural connectivity. Current Opinion in Neurobiology, 13, 79–89. doi: 10.1016/S0959-4388(03)00003-5.PubMedCrossRefGoogle Scholar
  39. Plane, J. M., Liu, R., Wang, T. W., Silverstein, F. S., & Parent, J. M. (2004). Neonatal hypoxic–ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiology of Disease, 16, 585–595. doi: 10.1016/j.nbd.2004.04.003.PubMedCrossRefGoogle Scholar
  40. Pulsinelli, W. A., & Brierley, J. B. (1979). A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke, 10, 267–272.PubMedGoogle Scholar
  41. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710. doi: 10.1126/science.1553558.PubMedCrossRefGoogle Scholar
  42. Sakai, J. A., & Halloran, M. C. (2006). Semaphorin 3d guides laterality of retinal ganglion cell projections in zebra fish. Development, 133, 1035–1044. doi: 10.1242/dev.02272.PubMedCrossRefGoogle Scholar
  43. Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427, 740–744. doi: 10.1038/nature02301.PubMedCrossRefGoogle Scholar
  44. Serini, G., Valdembri, D., Zanivan, S., Morterra, G., Burkhardt, C., Caccavari, F., et al. (2003). Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 424, 391–397. doi: 10.1038/nature01784.PubMedCrossRefGoogle Scholar
  45. Skaliora, I., Singer, W., Betz, H., & Puschel, A. W. (1998). Differential patterns of semaphorin expression in the developing rat brain. The European Journal of Neuroscience, 10, 1215–1229. doi: 10.1046/j.1460-9568.1998.00128.x.PubMedCrossRefGoogle Scholar
  46. Spassky, N., de Castro, F., Le Bras, B., Heydon, K., Queraud-leSaux, F., Bloch-Gallego, E., et al. (2002). Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. The Journal of Neuroscience, 22, 5992–6004.PubMedGoogle Scholar
  47. Suzuki, S. O., & Goldman, J. E. (2003). Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. The Journal of Neuroscience, 23, 4240–4250.PubMedGoogle Scholar
  48. Takagi, Y., Nozaki, K., Takahashi, J., Yodoi, J., Ishikawa, M., & Hashimoto, N. (1999). Proliferation of neuronal precursor cells in dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Research, 831, 283–287. doi: 10.1016/S0006-8993(99)01411-0.PubMedCrossRefGoogle Scholar
  49. Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., McInnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036. doi: 10.1126/science.287.5460.2032.PubMedCrossRefGoogle Scholar
  50. Wang, L. H., Kalb, R. G., & Strittmatter, S. M. (1999). A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. The Journal of Biological Chemistry, 274, 14137–14146. doi: 10.1074/jbc.274.20.14137.PubMedCrossRefGoogle Scholar
  51. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. The Journal of Neuroscience, 16, 7599–7609.PubMedGoogle Scholar
  52. West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231, 482–497. doi: 10.1002/ar.1092310411.PubMedCrossRefGoogle Scholar
  53. Williams-Hogarth, L. C., Puche, A. C., Torrey, C., Cai, X., Song, I., Kolodkin, A. L., et al. (2000). Expression of semaphorins in developing and regenerating olfactory epithelium. The Journal of Comparative Neurology, 423(4), 565–578. doi: 10.1002/1096-9861(20000807)423:4<565::AID-CNE3>3.0.CO;2-F.PubMedCrossRefGoogle Scholar
  54. Wu, H. T., Wang, X., Liu, S. H., Wu, Y., Zhao, T., Chen, X. P., et al. (2007). Sema4C participates in the myogenic differentiation in vivo and in vitro through p38 MAPK pathway. European Journal of Cell Biology, 86, 331–344. doi: 10.1016/j.ejcb.2007.03.002.PubMedCrossRefGoogle Scholar
  55. Xu, X. M., Fisher, D. A., Zhou, L., White, F. A., Ng, S., Snider, W. D., et al. (2000). The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. The Journal of Neuroscience, 20, 2638–2648.PubMedGoogle Scholar
  56. Yamada, T., Endo, R., Gotoh, M., & Hirohashi, S. (1997). Identification of semaphorin E as a non-MDR drug resistance gene of human cancers. Proceedings of the National Academy of Sciences of the United States of America, 94, 14713–14718. doi: 10.1073/pnas.94.26.14713.PubMedCrossRefGoogle Scholar
  57. Yamaguchi, M., Calvert, J. W., Kusaka, G., & Zhang, J. H. (2005). One-stage anterior approach for four-vessel occlusion in rat. Stroke, 36, 2212–2214. doi: 10.1161/01.STR.0000182238.08510.c5.PubMedCrossRefGoogle Scholar
  58. Yazdani, U., & Terman, J. R. (2006). The semaphorins. Genome Biology, 7, 211.1–14.CrossRefGoogle Scholar
  59. Zhang, R. L., Zhang, Z. G., Zhang, L., & Chopp, M. (2001). Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 105, 33–41. doi: 10.1016/S0306-4522(01)00117-8.PubMedCrossRefGoogle Scholar
  60. Zhu, L., & Onaka, T. (2002). Involvement of medullary A2 noradrenergic neurons in the activation of oxytocin neurons after conditioned fear stimuli. The European Journal of Neuroscience, 16, 2186–2198. doi: 10.1046/j.1460-9568.2002.02285.x.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Haitao Wu
    • 1
  • Jundie Fan
    • 1
  • Lingling Zhu
    • 1
  • Shuhong Liu
    • 1
  • Yan Wu
    • 1
  • Tong Zhao
    • 1
  • Yanrui Wu
    • 1
  • Xuefeng Ding
    • 1
  • Wenhong Fan
    • 1
  • Ming Fan
    • 1
  1. 1.Department of Brain Protection and Plasticity ResearchBeijing Institute of Basic Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations