Journal of Molecular Neuroscience

, Volume 39, Issue 1–2, pp 1–8 | Cite as

Neuroprotective Protein and Carboxypeptidase E



This review outlines the neuroprotective activities and structural specificities of two distinct proteins, activity-dependent neuroprotective protein, a protein assigned transcription factor/chromatin remodeling activity, and carboxypeptidase E, a classic exopeptidase. Future studies will elucidate how these two versatile proteins converge onto a similar endpoint: neuroprotection.


  1. Aloy, P., Companys, V., Vendrell, J., Aviles, F. X., Fricker, L. D., Coll, M., et al. (2001). The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases. Journal of Biological Chemistry, 276, 16177–16184.PubMedCrossRefGoogle Scholar
  2. Baas, D., Bumsted, K. M., Martinez, J. A., Vaccarino, F. M., Wikler, K. C., & Barnstable, C. J. (2000). The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Molecular Brain Research, 78, 26–37.PubMedCrossRefGoogle Scholar
  3. Bassan, M., Zamostiano, R., Davidson, A., Pinhasov, A., Giladi, E., Perl, O., et al. (1999). Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. Journal of Neurochemistry, 72, 1283–1293.PubMedCrossRefGoogle Scholar
  4. Beni-Adani, L., Gozes, I., Cohen, Y., Assaf, Y., Steingart, R. A., Brenneman, D. E., et al. (2001). A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. Journal of Pharmacology and Experimental Therapeutics, 296, 57–63.PubMedGoogle Scholar
  5. Borozdin, W., Graham Jr., J. M., Bohm, D., Bamshad, M. J., Spranger, S., Burke, L., et al. (2007). Multigene deletions on chromosome 20q13.13-q13.2 including SALL4 result in an expanded phenotype of Okihiro syndrome plus developmental delay. Human Mutation, 28(8), 830.PubMedCrossRefGoogle Scholar
  6. Cawley, N. X., Zhou, J., Hill, J. M., Abebe, D., Romboz, S., Yanik, T., et al. (2004). The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits. Endocrinology, 145, 5807–5819.PubMedCrossRefGoogle Scholar
  7. Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signalling in health and disease. Clinical Science (London), 110, 167–173.Google Scholar
  8. Chen, S. Y., Charness, M. E., Wilkemeyer, M. F., & Sulik, K. K. (2005). Peptide-mediated protection from ethanol-induced neural tube defects. Devevelopmental Neuroscience, 27, 13–19.CrossRefGoogle Scholar
  9. Cool, D. R., Normant, E., Shen, F. S., Chen, H. C., Pannell, L., Zhang, Y., et al. (1997). Carboxypeptidase E is a regulated secretory pathway sorting receptor: Genetic obliteration leads to endocrine disorders in Cpefat mice.. Cell, 88, 73–83.PubMedCrossRefGoogle Scholar
  10. Cosgrave, A. S., McKay, J. S., Bubb, V., Morris, R., Quinn, J. P., & Thippeswamy, T. (2008). Regulation of activity-dependent neuroprotective protein (ADNP) by the NOcGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiology of Disease, 30, 281–292.PubMedCrossRefGoogle Scholar
  11. Dangoor, D., Giladi, E., Fridkin, M., & Gozes, I. (2005). Neuropeptide receptor transcripts are expressed in the rat clitoris and oscillate during the estrus cycle in the rat vagina. Peptides, 26, 2579–2584.PubMedCrossRefGoogle Scholar
  12. Divinski, I., Holtser-Cochav, M., Vulih-Schultzman, I., Steingart, R. A., & Gozes, I. (2006). Peptide neuroprotection through specific interaction with brain tubulin. Journal of Neurochemistry, 98, 973–984.PubMedCrossRefGoogle Scholar
  13. Divinski, I., Mittelman, L., & Gozes, I. (2004). A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. Journal of Biological Chemistry, 279, 28531–28538.PubMedCrossRefGoogle Scholar
  14. Fricker, L. D., & Snyder, S. H. (1983). Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. Journal of Biological Chemistry, 258, 10950–10955.PubMedGoogle Scholar
  15. Furman, S., Hill, J. M., Vulih, I., Zaltzman, R., Hauser, J. M., Brenneman, D. E., & Gozes, I. (2005). Sexual dimorphism of activity-dependent neuroprotective protein in the mouse arcuate nucleus. Neuroscience Letters, 373, 73–78.PubMedCrossRefGoogle Scholar
  16. Furman, S., Steingart, R. A., Mandel, S., Hauser, J. M., Brenneman, D. E., & Gozes, I. (2004). Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron Glia Biology, 1, 193–199.PubMedCrossRefGoogle Scholar
  17. Fuse, N., Maiti, T., Wang, B., Porter, J. A., Hall, T. M., Leahy, D. J., et al. (1999). Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched.. Proceedings of the National Academy of Sciences of the United States of America, 96, 10992–10999.PubMedCrossRefGoogle Scholar
  18. Gennet, N., Herden, C., Bubb, V. J., Quinn, J. P., & Kipar, A. (2008). Expression of activity-dependent neuroprotective protein in the brain of adult rats. Histology and Histopathology, 23, 309–317.PubMedGoogle Scholar
  19. Gozes, I. (2007). Activity-dependent neuroprotective protein: From gene to drug candidate. Pharmacology & Therapeutics, 114, 146–154.CrossRefGoogle Scholar
  20. Gozes, I., & Divinski, I. (2004). The femtomolar-acting NAP interacts with microtubules: Novel aspects of astrocyte protection. Journal of Alzheimer’s Disease, 6, S37–S41.PubMedGoogle Scholar
  21. Gozes, I., Divinsky, I., Pilzer, I., Fridkin, M., Brenneman, D. E., & Spier, A. D. (2003). From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: A view of neuroprotection and cell division. Journal of Molecular Neurosciene, 20, 315–322.CrossRefGoogle Scholar
  22. Gozes, I., Morimoto, B. H., Tiong, J., Fox, A., Sutherland, K., Dangoor, D., et al. (2005a). NAP: Research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Reviews, 11, 353–368.PubMedGoogle Scholar
  23. Gozes, I., Zaltzman, R., Hauser, J., Brenneman, D. E., Shohami, E., & Hill, J. M. (2005b). The expression of activity-dependent neuroprotective protein (ADNP) is regulated by brain damage and treatment of mice with the ADNP derived peptide, NAP, reduces the severity of traumatic head injury. Current Alzheimer Research, 2, 149–153.PubMedCrossRefGoogle Scholar
  24. Hook, V. Y. (1984). Carboxypeptidase B-like activity for the processing of enkephalin precursors in the membrane component of bovine adrenomedullary chromaffin granules. Neuropeptides, 4, 117–126.PubMedCrossRefGoogle Scholar
  25. Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., et al. (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11, 1153–1161.PubMedCrossRefGoogle Scholar
  26. Jacob, T. C., & Kaplan, J. M. (2003). The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. Journal of Neuroscience, 23, 2122–2130.PubMedGoogle Scholar
  27. Jeffrey, K. D., Alejandro, E. U., Luciani, D. S., Kalynyak, T. B., Hu, X., Li, H., et al. (2008). Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 8452–8457.PubMedCrossRefGoogle Scholar
  28. Jin, K., Graham, S. H., Nagayama, T., Goldsmith, P. C., Greenberg, D. A., Zhou, A., et al. (2001). Altered expression of the neuropeptide-processing enzyme carboxypeptidase E in the rat brain after global ischemia. Journal of Cerebral Blood Flow & Metabolism, 21, 1422–1429.Google Scholar
  29. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., & Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 92, 8856–8560.PubMedCrossRefGoogle Scholar
  30. Lou, H., Kim, S. K., Zaitsev, E., Snell, C. R., Lu, B., & Loh, Y. P. (2005). Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron, 45, 245–255.PubMedCrossRefGoogle Scholar
  31. Mandel, S., & Gozes, I. (2007). Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. Journal of Biological Chemistry, 282(47), 34448–34456.PubMedCrossRefGoogle Scholar
  32. Mandel, S., Rechavi, G., & Gozes, I. (2007). Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Developmental Biology, 303, 814–824.PubMedCrossRefGoogle Scholar
  33. Mandel, S., Spivak-Pohis, I., & Gozes, I. (2008). ADNP differential nucleus/cytoplasm localization in neurons suggests multiple roles in neuronal differentiation and maintenance. Journal of Molecular Neuroscience, 35, 127–141.PubMedCrossRefGoogle Scholar
  34. Matsuoka, Y., Gray, A. J., Hirata-Fukae, C., Minami, S. S., Waterhouse, E. G., Mattson, M. P., et al. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. Journal of Molecular Neuroscience, 31, 165–170.PubMedGoogle Scholar
  35. Nedelec, S., Foucher, I., Brunet, I., Bouillot, C., Prochiantz, A., & Trembleau, A. (2004). Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 10815–10820.PubMedCrossRefGoogle Scholar
  36. Niikura, T., Tajima, H., & Kita, Y. (2006). Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Current Neuropharmacology, 4, 139–147.PubMedCrossRefGoogle Scholar
  37. Park, J. J., Cawley, N. X., & Loh, Y. P. (2008a). A bi-directional carboxypeptidase E-driven transport mechanism controls BDNF vesicle homeostasis in hippocampal neurons.. Molecular and Cellular Neuroscience, 39, 63–73.PubMedCrossRefGoogle Scholar
  38. Park, J. J., Cawley, N. X., & Loh, Y. P. (2008b). Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones. Molecular Endocrinology, 22, 989–1005.PubMedCrossRefGoogle Scholar
  39. Pascual, M., & Guerri, C. (2007). The peptide NAP promotes neuronal growth and differentiation through extracellular signal-regulated protein kinase and Akt pathways, and protects neurons co-cultured with astrocytes damaged by ethanol. Journal of Neurochemistry, 103, 557–568.PubMedCrossRefGoogle Scholar
  40. Pinhasov, A., Mandel, S., Torchinsky, A., Giladi, E., Pittel, Z., Goldsweig, A. M., et al. (2003). Activity-dependent neuroprotective protein: A novel gene essential for brain formation. Developmental Brain Research, 144, 83–90.PubMedCrossRefGoogle Scholar
  41. Poggi, S. H., Vink, J., Goodwin, K., Hill, J. M., Brenneman, D. E., Pinhasov, A., et al. (2002). Differential expression of embryonic and maternal activity-dependent neuroprotective protein during mouse development. American Journal of Obstetrics and Gynecology, 187, 973–976.PubMedCrossRefGoogle Scholar
  42. Sari, Y., & Gozes, I. (2006). Brain deficits associated with fetal alcohol exposure may be protected, in part, by peptides derived from activity-dependent neurotrophic factor and activity-dependent neuroprotective protein. Brain Research Reviews, 52, 107–118.PubMedCrossRefGoogle Scholar
  43. Shetty, A. K., & Hattiangady, B. (2007). Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus, 17, 943–956.PubMedCrossRefGoogle Scholar
  44. Sigalov, E., Fridkin, M., Brenneman, D. E., & Gozes, I. (2000). VIP-Related protection against lodoacetate toxicity in pheochromocytoma (PC12) cells: A model for ischemic/hypoxic injury. Journal of Molecular Neuroscience, 15, 147–54.PubMedCrossRefGoogle Scholar
  45. Steingart, R. A., & Gozes, I. (2006). Recombinant activity-dependent neuroprotective protein protects cells against oxidative stress. Molecular and Cellular Endocrinology, 252, 148–153.PubMedCrossRefGoogle Scholar
  46. Thippeswamy, T., Howard, M. R., Cosgrave, A. S., Arora, D. K., McKay, J. S., & Quinn, J. P. (2007). Nitric oxide-NGF mediated PPTA/SP, ADNP, and VIP expression in the peripheral nervous system. Journal of Molecular Neuroscience, 33, 268–277.PubMedCrossRefGoogle Scholar
  47. Vulih-Shultzman, I., Pinhasov, A., Mandel, S., Grigoriadis, N., Touloumi, O., Pittel, Z., et al. (2007). Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. Journal of Pharmacology and Experimental Therapeutics, 323, 438–449.PubMedCrossRefGoogle Scholar
  48. Wilhelm, J. E., Hilton, M., Amos, Q., & Henzel, W. J. (2003). Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. Journal of Cell Biology, 163, 1197–1204.PubMedCrossRefGoogle Scholar
  49. Woronowicz, A., Koshimizu, H., Chang, S. Y., Cawley, N. X., Hill, J. M., Rodriguiz, R. M., et al. (2008). Absence of carboxypeptidase E leads to adult hippocampal neuronal degeneration and memory deficits. Hippocampus, 18, 1051–1063.PubMedCrossRefGoogle Scholar
  50. Yamada, M., Tanabe, K., Wada, K., Shimoke, K., Ishikawa, Y., Ikeuchi, T., et al. (2001). Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons.. Journal of Neurochemistry, 78, 940–951.PubMedCrossRefGoogle Scholar
  51. Yamagishi, S., Yamada, M., Ishikawa, Y., Matsumoto, T., Ikeuchi, T., & Hatanaka, H. (2001). p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. Journal of Biological Chemistry, 276, 5129–5133.PubMedCrossRefGoogle Scholar
  52. Zaltzman, R., Alexandrovich, A., Beni, S. M., Trembovler, V., Shohami, E., & Gozes, I. (2004). Brain injury-dependent expression of activity-dependent neuroprotective protein. Journal of Molecular Neuroscience, 24, 181–187.PubMedCrossRefGoogle Scholar
  53. Zamostiano, R., Pinhasov, A., Gelber, E., Steingart, R. A., Seroussi, E., Giladi, E., et al. (2001). Cloning and characterization of the human activity-dependent neuroprotective protein. Journal of Biological Chemistry, 276, 708–714.PubMedCrossRefGoogle Scholar
  54. Zhu, X., Wu, K., Rife, L., Cawley, N. X., Brown, B., Adams, T., et al. (2005). Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. Journal of Neurochemistry, 95, 1351–1362.PubMedCrossRefGoogle Scholar
  55. Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease.. Progress in Neurobiology, 81, 294–330.PubMedCrossRefGoogle Scholar
  56. Zusev, M., & Gozes, I. (2004). Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regulatory Peptides, 123, 33–41.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  2. 2.Elton Laboratory for Molecular Neuoendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations