Journal of Molecular Neuroscience

, Volume 38, Issue 1, pp 19–30

Effects of Ubiquilin 1 on the Unfolded Protein Response

  • Alice Lu
  • Mikko Hiltunen
  • Donna M. Romano
  • Hilkka Soininen
  • Bradley T. Hyman
  • Lars Bertram
  • Rudolph E. Tanzi
Article

Abstract

Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer’s disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2–4) and TV4 (lacking exon 4). Overexpression of TV1–3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1–3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1–3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.

Keywords

UBQLN1 Ubiquilin 1 UPR Unfolded protein response CHOP C/EBP homologous protein PDI Protein disulfide isomerase BiP/GRP78 AD Alzheimer’s disease 

References

  1. Bedford, F. K., Kittler, J. T., Muller, E., Thomas, P., Uren, J. M., Merlo, D., et al. (2001). GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature Neuroscience, 4, 908–916. doi:10.1038/nn0901-908.CrossRefPubMedGoogle Scholar
  2. Bertram, L., Hiltunen, M., Parkinson, M., Ingelsson, M., Lange, C., Ramasamy, K., et al. (2005). Family-based association between Alzheimer’s disease and variants in UBQLN1. The New England Journal of Medicine, 352, 884–894. doi:10.1056/NEJMoa042765.CrossRefPubMedGoogle Scholar
  3. Chen, G., Fan, Z., Wang, X., Ma, C., Bower, K. A., Shi, X., et al. (2007). Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. Journal of Neuroscience Research, 85, 1674–1684. doi:10.1002/jnr.21292.CrossRefPubMedGoogle Scholar
  4. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923. doi:10.1126/science.8346443.CrossRefPubMedGoogle Scholar
  5. Dorner, A. J., Wasley, L. C., Raney, P., Haugejorden, S., Green, M., & Kaufman, R. J. (1990). The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. The Journal of Biological Chemistry, 265, 22029–22034.PubMedGoogle Scholar
  6. Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T., & Kobayashi, H. (1999). Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. The EMBO Journal, 18, 5009–5018. doi:10.1093/emboj/18.18.5009.CrossRefPubMedGoogle Scholar
  7. Gao, L., Tu, H., Shi, S. T., Lee, K. J., Asanaka, M., Hwang, S. B., et al. (2003). Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase. Journal of Virology, 77, 4149–4159. doi:10.1128/JVI.77.7.4149-4159.2003.CrossRefPubMedGoogle Scholar
  8. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706. doi:10.1038/349704a0.CrossRefPubMedGoogle Scholar
  9. Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell killing. Journal of Immunological Methods, 119, 203–210. doi:10.1016/0022-1759(89)90397-9.CrossRefPubMedGoogle Scholar
  10. Heir, R., Ablasou, C., Dumontier, E., Elliott, M., Fagotto-Kaufmann, C., & Bedford, F. K. (2006). The UBL domain of PLIC-1 regulates aggresome formation. EMBO Reports, 7, 1252–1258. doi:10.1038/sj.embor.7400823.CrossRefPubMedGoogle Scholar
  11. Hiltunen, M., Lu, A., Thomas, A. V., Romano, D. M., Kim, M., Jones, P. B., et al. (2006). Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. The Journal of Biological Chemistry, 281, 32240–32253. doi:10.1074/jbc.M603106200.CrossRefPubMedGoogle Scholar
  12. Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., et al. (2004). Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 62, 925–931.PubMedGoogle Scholar
  13. Iwatsubo, T. (2004). The gamma-secretase complex: machinery for intramembrane proteolysis. Current Opinion in Neurobiology, 14, 379–383. doi:10.1016/j.conb.2004.05.010.CrossRefPubMedGoogle Scholar
  14. Kamboh, M. I., Minster, R. L., Feingold, E., & DeKosky, S. T. (2006). Genetic association of ubiquilin with Alzheimer’s disease and related quantitative measures. Molecular Psychiatry, 11, 273–279. doi:10.1038/sj.mp.4001775.CrossRefPubMedGoogle Scholar
  15. Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., et al. (1999). Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology, 1, 479–485. doi:10.1038/70265.CrossRefPubMedGoogle Scholar
  16. Ko, H. S., Uehara, T., & Nomura, Y. (2002). Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. The Journal of Cell Biology, 277, 35386–35392.Google Scholar
  17. Ko, H. S., Uehara, T., Tsuruma, K., & Nomura, Y. (2004). Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Letters, 566, 110–114. doi:10.1016/j.febslet.2004.04.031.CrossRefPubMedGoogle Scholar
  18. Kogel, D., Schomburg, R., Schurmann, T., Reimertz, C., Konig, H. G., Poppe, M., et al. (2003). The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. Journal of Neurochemistry, 87, 248–256. doi:10.1046/j.1471-4159.2003.02000.x.CrossRefPubMedGoogle Scholar
  19. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269, 973–977. doi:10.1126/science.7638622.CrossRefPubMedGoogle Scholar
  20. Li, J., & Holbrook, N. J. (2004). Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensitizes aged cells to ER stress. Experimental Gerontology, 39, 735–744. doi:10.1016/j.exger.2004.02.008.CrossRefPubMedGoogle Scholar
  21. Mah, A. L., Perry, G., Smith, M. A., & Monteiro, M. J. (2000). Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. The Journal of Cell Biology, 151, 847–862. doi:10.1083/jcb.151.4.847.CrossRefPubMedGoogle Scholar
  22. Massey, L. K., Mah, A. L., Ford, D. L., Miller, J., Liang, J., Doong, H., et al. (2004). Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. Journal of Alzheimer’s Disease, 6, 79–92.PubMedGoogle Scholar
  23. Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63, 71–124. doi:10.1016/S0301-0082(00)00014-9.CrossRefPubMedGoogle Scholar
  24. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376, 775–778. doi:10.1038/376775a0.CrossRefPubMedGoogle Scholar
  25. Sato, N., Urano, F., Yoon Leem, J., Kim, S. H., Li, M., Donoviel, D., et al. (2000). Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nature Cell Biology, 2, 863–870. doi:10.1038/35046500.CrossRefPubMedGoogle Scholar
  26. Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.PubMedGoogle Scholar
  27. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760. doi:10.1038/375754a0.CrossRefPubMedGoogle Scholar
  28. Thomas, A. V., Herl, L., Spoelgen, R., Hiltunen, M., Jones, P. B., Tanzi, R. E., et al. (2006). Interaction between presenilin 1 and ubiquilin 1 as detected by fluorescence lifetime imaging microscopy and a high-throughput fluorescent plate reader. The Journal of Biological Chemistry, 281, 26400–26407. doi:10.1074/jbc.M601085200.CrossRefPubMedGoogle Scholar
  29. Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517. doi:10.1038/nature04782.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Alice Lu
    • 1
    • 2
  • Mikko Hiltunen
    • 1
    • 3
    • 4
  • Donna M. Romano
    • 1
  • Hilkka Soininen
    • 3
    • 4
  • Bradley T. Hyman
    • 5
  • Lars Bertram
    • 1
  • Rudolph E. Tanzi
    • 1
    • 2
  1. 1.Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownUSA
  2. 2.Harvard Medical SchoolCharlestownUSA
  3. 3.Department of NeurologyUniversity HospitalKuopioFinland
  4. 4.Department of NeurologyUniversity of KuopioKuopioFinland
  5. 5.Alzheimer’s Research Unit, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownUSA

Personalised recommendations