Journal of Molecular Neuroscience

, Volume 38, Issue 2, pp 103–113 | Cite as

EGb761 Protects Hydrogen Peroxide-induced Death of Spinal Cord Neurons through Inhibition of Intracellular ROS Production and Modulation of Apoptotic Regulating Genes

  • Xiaoyan Jiang
  • Baoming Nie
  • Saili Fu
  • Jianguo Hu
  • Lan Yin
  • Lin Lin
  • Xiaofei Wang
  • Peihua Lu
  • Xiao-Ming Xu
Article

Abstract

The present study was conducted to investigate whether Ginkgo biloba extract (EGb) 761 could protect spinal cord neurons from H2O2-induced toxicity. In primary spinal cord neurons isolated from embryonic day 14 rats, H2O2 administration resulted in a significant decrease in the survival of spinal cord neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Hoechst 33342 nuclear staining showed that these cells die by apoptosis. Such neuronal death, however, was significantly reversed by EGb761 in a dose-dependent manner. Moreover, a marked increase in intracellular free radical generation was found after the H2O2 administration which could be reversed almost completely by EGb761, indicating that inhibition of free radical generation is an important mechanism of the anti-apoptosis action of EGb761. Finally, treatment of cells with H2O2 for 12 h reduced the expression of Bcl-2, an anti-apoptotic gene, by 70% but showed no effect on the level of Bax, a pro-apoptotic gene. EGb76 treatment, however, significantly reversed H2O2-induced reduction of Bcl-2 expression and inhibited Bax expression by 2.3-fold. Thus, our study provided evidence showing that the protective effect of EGb761 on spinal cord neuronal apoptosis after oxidative stress is mediated, at least in part, by its anti-oxidative action and regulation of apoptosis-related genes Bcl-2 and Bax.

Keywords

Hydrogen peroxide Spinal cord neurons Oxidative stress EGb761 Apoptosis Neuroprotection 

References

  1. Baldwin, S. A., Broderick, R., Osbourne, D., Waeg, G., Blades, D. A., & Scheff, S. W. (1998). The presence of 4-hydroxynonenal/protein complex as an indicator of oxidative stress after experimental spinal cord contusion in a rat model. Journal of Neurosurgery, 88, 874–883.PubMedGoogle Scholar
  2. Bao, F., & Liu, D. (2004). Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin. Neuroscience, 126, 285–295. doi:10.1016/j.neuroscience.2004.03.054.PubMedCrossRefGoogle Scholar
  3. Bastianetto, S., Zheng, W. H., & Quirion, R. (2000). The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. Journal of Neurochemistry, 74, 2268–2277. doi:10.1046/j.1471-4159.2000.0742268.x.PubMedCrossRefGoogle Scholar
  4. Behrmann, D. L., Bresnahan, J. C., & Beattie, M. S. (1994). Modeling of acute spinal cord injury in the rat: neuroprotection and enhanced recovery with methylprednisolone, U-74006F and YM-14673. Experimental Neurology, 126, 61–75. doi:10.1006/exnr.1994.1042.PubMedCrossRefGoogle Scholar
  5. Bethea, J. R. (2000). Spinal cord injury-induced inflammation: a dual-edged sword. Progress in Brain Research, 128, 33–42. doi:10.1016/S0079-6123(00)28005-9.PubMedCrossRefGoogle Scholar
  6. Blight, A. R., & Decrescito, V. (1986). Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons. Neuroscience, 19, 321–341. doi:10.1016/0306-4522(86)90025-4.PubMedCrossRefGoogle Scholar
  7. Boise, L. H., & Thompson, C. B. (1997). Bcl-x(L) can inhibit apoptosis in cells that have undergone Fas-induced protease activation. Proceedings of the National Academy of Sciences of the United States of America, 94, 3759–3764. doi:10.1073/pnas.94.8.3759.PubMedCrossRefGoogle Scholar
  8. Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. The New England Journal of Medicine, 322, 1405–1411.PubMedCrossRefGoogle Scholar
  9. Bracken, M. B., Shepard, M. J., Collins Jr, W. F., Holford, T. R., Baskin, D. S., Eisenberg, H. M., et al. (1992). Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the Second National Acute Spinal Cord Injury Study. Journal of Neurosurgery, 76, 23–31.PubMedCrossRefGoogle Scholar
  10. Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., et al. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. Journal of the American Medical Association, 277, 1597–1604. doi:10.1001/jama.277.20.1597.PubMedCrossRefGoogle Scholar
  11. Cai, J., & Jones, D. P. (1998). Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. The Journal of Biological Chemistry, 273, 11401–11404. doi:10.1074/jbc.273.19.11401.PubMedCrossRefGoogle Scholar
  12. Castagne, V., Gautschi, M., Lefevre, K., Posada, A., & Clarke, P. G. (1999). Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Progress in Neurobiology, 59, 397–423. doi:10.1016/S0301-0082(99)00012-X.PubMedCrossRefGoogle Scholar
  13. Chen, K., Thomas, S. R., Albano, A., Murphy, M. P., & Keaney Jr., J. F. (2004). Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. The Journal of Biological Chemistry, 279, 35079–35086. doi:10.1074/jbc.M404859200.PubMedCrossRefGoogle Scholar
  14. Cole, K. K., & Perez-Polo, J. R. (2002). Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. Journal of Neurochemistry, 82, 19–29. doi:10.1046/j.1471-4159.2002.00935.x.PubMedCrossRefGoogle Scholar
  15. Crossthwaite, A. J., Hasan, S., & Williams, R. J. (2002). Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. Journal of Neurochemistry, 80, 24–35. doi:10.1046/j.0022-3042.2001.00637.x.PubMedCrossRefGoogle Scholar
  16. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N., & Beattie, M. S. (1997). Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine, 3, 73–76. doi:10.1038/nm0197-73.PubMedCrossRefGoogle Scholar
  17. Droy-Lefaix, M. T., Menerath, J. M., Szabo-Tosaki, E., Guillaumin, D., & Doly, M. (1995). Protective effect of EGb 761 on ischemia–reperfusion damage in the rat retina. Transplantation Proceedings, 27, 2861–2862.PubMedGoogle Scholar
  18. Gottlieb, E., Vander Heiden, M. G., & Thompson, C. B. (2000). Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Molecular and Cellular Biology, 20, 5680–5689. doi:10.1128/MCB.20.15.5680-5689.2000.PubMedCrossRefGoogle Scholar
  19. Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210. doi:10.1016/0022-1759(89)90397-9.PubMedCrossRefGoogle Scholar
  20. Hauser, K. F., Knapp, P. E., & Turbek, C. S. (2001). Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Experimental Neurology, 168, 78–87. doi:10.1006/exnr.2000.7580.PubMedCrossRefGoogle Scholar
  21. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75, 241–251. doi:10.1016/0092-8674(93)80066-N.PubMedCrossRefGoogle Scholar
  22. Hu, J. G., Fu, S. L., Zhang, K. H., Li, Y., Yin, L., Lu, P. H., et al. (2004). Differential gene expression in neural stem cells and oligodendrocyte precursor cells: a cDNA microarray analysis. Journal of Neuroscience Research, 78, 637–646. doi:10.1002/jnr.20317.PubMedCrossRefGoogle Scholar
  23. Hurlbert, R. J. (2001). The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine, 26, S39–S46. doi:10.1097/00007632-200112151-00009.PubMedCrossRefGoogle Scholar
  24. Issa, Y., Watts, D. C., Brunton, P. A., Waters, C. M., & Duxbury, A. J. (2004). Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dental Materials, 20, 12–20. doi:10.1016/S0109-5641(03)00053-8.PubMedCrossRefGoogle Scholar
  25. Jiang, X. Y., Fu, S. L., Nie, B. M., Li, Y., Lin, L., Yin, L., et al. (2006). Methods for isolating highly-enriched embryonic spinal cord neurons: a comparison between enzymatic and mechanical dissociations. Journal of Neuroscience Methods, 158, 13–18. doi:10.1016/j.jneumeth.2006.05.014x.PubMedCrossRefGoogle Scholar
  26. Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., et al. (1993). Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science, 262, 1274–1277. doi:10.1126/science.8235659.PubMedCrossRefGoogle Scholar
  27. Kleijnen, J., & Knipschild, P. (1992). Ginkgo biloba. Lancet, 340, 1136–1139. doi:10.1016/0140-6736(92)93158-J.PubMedCrossRefGoogle Scholar
  28. Liu, D., Liu, J., & Wen, J. (1999a). Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction. Free Radical Biology & Medicine, 27, 478–482. doi:10.1016/S0891-5849(99)00073-8.CrossRefGoogle Scholar
  29. Liu, D., Liu, J., Sun, D., & Wen, J. (2004). The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber–Weiss reaction. Journal of Neurotrauma, 21, 805–816. doi:10.1089/0897715041269650.PubMedCrossRefGoogle Scholar
  30. Liu, D., Sybert, T. E., Qian, H., & Liu, J. (1998). Superoxide production after spinal injury detected by microperfusion of cytochrome c. Free Radical Biology & Medicine, 25, 298–304. doi:10.1016/S0891-5849(98)00055-0.CrossRefGoogle Scholar
  31. Liu, D., Xu, G. Y., Pan, E., & McAdoo, D. J. (1999b). Neurotoxicity of glutamate at the concentration released upon spinal cord injury. Neuroscience, 93, 1383–1389. doi:10.1016/S0306-4522(99)00278-X.PubMedCrossRefGoogle Scholar
  32. Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., et al. (1997). Neuronal and glial apoptosis after traumatic spinal cord injury. The Journal of Neuroscience, 17, 5395–5406.PubMedGoogle Scholar
  33. Luongo, D., Bergamo, P., & Rossi, M. (2003). Effects of conjugated linoleic acid on growth and cytokine expression in Jurkat T cells. Immunology Letters, 90, 195–201. doi:10.1016/j.imlet.2003.09.012.PubMedCrossRefGoogle Scholar
  34. Marcocci, L., Maguire, J. J., Droy-Lefaix, M. T., & Packer, L. (1994a). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and Biophysical Research Communications, 201, 748–755. doi:10.1006/bbrc.1994.1764.PubMedCrossRefGoogle Scholar
  35. Marcocci, L., Packer, L., Droy-Lefaix, M. T., Sekaki, A., & Gardes-Albert, M. (1994b). Antioxidant action of Ginkgo biloba extract EGb 761. Methods in Enzymology, 234, 462–475. doi:10.1016/0076-6879(94)34117-6.PubMedCrossRefGoogle Scholar
  36. Massieu, L., Moran, J., & Christen, Y. (2004). Effect of Ginkgo biloba (EGb 761) on staurosporine-induced neuronal death and caspase activity in cortical cultured neurons. Brain Research, 1002, 76–85. doi:10.1016/j.brainres.2003.12.018.PubMedCrossRefGoogle Scholar
  37. Mattson, M. P., Barger, S. W., Begley, J. G., & Mark, R. J. (1995). Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods in Cell Biology, 46, 187–216. doi:10.1016/S0091-679X(08)61930-5.PubMedCrossRefGoogle Scholar
  38. Maxwell, D. P., Wang, Y., & McIntosh, L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 8271–8276. doi:10.1073/pnas.96.14.8271.PubMedCrossRefGoogle Scholar
  39. Nie, B. M., Yang, L. M., Fu, S. L., Jiang, X. Y., Lu, P. H., & Lu, Y. (2006). Protective effect of panaxydol and panaxynol on sodium nitroprusside-induced apoptosis in cortical neurons. Chemico-Biological Interactions, 160, 225–231. doi:10.1016/j.cbi.2006.02.001.PubMedCrossRefGoogle Scholar
  40. Oberpichler, H., Beck, T., Abdel-Rahman, M. M., Bielenberg, G. W., & Krieglstein, J. (1988). Effects of Ginkgo biloba constituents related to protection against brain damage caused by hypoxia. Pharmacological Research Communications, 20, 349–368. doi:10.1016/S0031-6989(88)80011-0.PubMedCrossRefGoogle Scholar
  41. Oken, B. S., Storzbach, D. M., & Kaye, J. A. (1998). The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Archives of Neurology, 55, 1409–1415. doi:10.1001/archneur.55.11.1409.PubMedCrossRefGoogle Scholar
  42. Olanow, C. W. (1993). A radical hypothesis for neurodegeneration. Trends in Neurosciences, 16, 439–444. doi:10.1016/0166-2236(93)90070-3.PubMedCrossRefGoogle Scholar
  43. Popovich, P. G., Wei, P., & Stokes, B. T. (1997). Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. The Journal of Comparative Neurology, 377, 443–464. doi:10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S..PubMedCrossRefGoogle Scholar
  44. Rabchevsky, A. G., Fugaccia, I., Sullivan, P. G., Blades, D. A., & Scheff, S. W. (2002). Efficacy of methylprednisolone therapy for the injured rat spinal cord. Journal of Neuroscience Research, 68, 7–18. doi:10.1002/jnr.10187.PubMedCrossRefGoogle Scholar
  45. Rai, G. S., Shovlin, C., & Wesnes, K. A. (1991). A double-blind, placebo controlled study of Ginkgo biloba extract (‘tanakan’) in elderly outpatients with mild to moderate memory impairment. Current Medical Research and Opinion, 12, 350–355.PubMedGoogle Scholar
  46. Rockwell, P., Martinez, J., Papa, L., & Gomes, E. (2004). Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cellular Signalling, 16, 343–353. doi:10.1016/j.cellsig.2003.08.006.PubMedCrossRefGoogle Scholar
  47. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., et al. (1998). Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391, 496–499. doi:10.1038/35160.PubMedCrossRefGoogle Scholar
  48. Satoh, T., Enokido, Y., Aoshima, H., Uchiyama, Y., & Hatanaka, H. (1997). Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. Journal of Neuroscience Research, 50, 413–420. doi:10.1002/(SICI)1097-4547(19971101)50:3<413::AID-JNR7>3.0.CO;2-L.PubMedCrossRefGoogle Scholar
  49. Satoh, T., Sakai, N., Enokido, Y., Uchiyama, Y., & Hatanaka, H. (1996). Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. Journal of Biochemistry, 120, 540–546.PubMedGoogle Scholar
  50. Scott, G. S., Virag, L., Szabo, C., & Hooper, D. C. (2003). Peroxynitrite-induced oligodendrocyte toxicity is not dependent on poly(ADP-ribose) polymerase activation. Glia, 41, 105–116. doi:10.1002/glia.10137.PubMedCrossRefGoogle Scholar
  51. Springer, J. E., Azbill, R. D., & Knapp, P. E. (1999). Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature Medicine, 5, 943–946. doi:10.1038/11387.PubMedCrossRefGoogle Scholar
  52. Tyurina, Y. Y., Tyurin, V. A., Carta, G., Quinn, P. J., Schor, N. F., & Kagan, V. E. (1997). Direct evidence for antioxidant effect of Bcl-2 in PC12 rat pheochromocytoma cells. Archives of Biochemistry and Biophysics, 344, 413–423. doi:10.1006/abbi.1997.0201.PubMedCrossRefGoogle Scholar
  53. Warden, P., Bamber, N. I., Li, H., Esposito, A., Ahmad, K. A., Hsu, C. Y., et al. (2001). Delayed glial cell death following Wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Experimental Neurology, 168, 213–224. doi:10.1006/exnr.2000.7622.PubMedCrossRefGoogle Scholar
  54. Williams, R. J., Spencer, J. P., Goni, F. M., & Rice-Evans, C. A. (2004). Zinc–histidine complex protects cultured cortical neurons against oxidative stress-induced damage. Neuroscience Letters, 371, 106–110. doi:10.1016/j.neulet.2004.08.054.PubMedCrossRefGoogle Scholar
  55. Xin, W., Wei, T., Chen, C., Ni, Y., Zhao, B., & Hou, J. (2000). Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology, 148, 103–110. doi:10.1016/S0300-483X(00)00200-6.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Xiaoyan Jiang
    • 1
    • 2
  • Baoming Nie
    • 3
  • Saili Fu
    • 1
  • Jianguo Hu
    • 1
    • 4
  • Lan Yin
    • 1
  • Lin Lin
    • 1
  • Xiaofei Wang
    • 1
    • 4
  • Peihua Lu
    • 1
  • Xiao-Ming Xu
    • 1
    • 4
  1. 1.Department of NeurobiologyShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Department of PharmacologyTongji University School of MedicineShanghaiPeople’s Republic of China
  3. 3.Institute of Material MedicineShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  4. 4.Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisUSA

Personalised recommendations