Journal of Molecular Neuroscience

, Volume 38, Issue 2, pp 128–142 | Cite as

Implication of NMDA Receptors in the Antidyskinetic Activity of Cabergoline, CI-1041, and Ro 61-8048 in MPTP Monkeys with Levodopa-induced Dyskinesias

  • Bazoumana Ouattara
  • Samah Belkhir
  • Marc Morissette
  • Mehdi Dridi
  • Pershia Samadi
  • Laurent Grégoire
  • Leonard T. Meltzer
  • Thérèse Di Paolo


This study assessed striatal N-methyl-D-aspartate (NMDA) glutamate receptors of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys with levodopa (L-DOPA)-induced dyskinesias (LID). In a first experiment, four MPTP monkeys receiving L-DOPA/Benserazide alone developed dyskinesias. Four MPTP monkeys received L-DOPA/Benserazide plus CI-1041 an NMDA antagonist selective for NR1/NR2B and four were treated with L-DOPA/Benserazide plus a small dose of cabergoline; one monkey of each group developed mild dyskinesias at the end of treatment. In a second experiment, a kynurenine 3-hydroxylase inhibitor Ro 61-8048, combined with L-DOPA/Benserazide, reduced dyskinesias in MPTP monkeys. Drug-treated MPTP monkeys were compared to intact monkeys and saline-treated MPTP monkeys. Glutamate receptors were investigated by autoradiography using [3H]CGP-39653 (NR1/NR2A antagonist) and [3H]Ro25-6981 (NR1/NR2B antagonist). In general, striatal [3H]CGP-39653 specific binding was unaltered in all experimental groups. MPTP lesion decreased striatal [3H]Ro25-6981 specific binding; these levels were enhanced in the L-DOPA-alone-treated MPTP monkeys and decreased in antidyskinetic drugs treated monkeys. Maximal dyskinesias scores of the MPTP monkeys correlated significantly with [3H]Ro25-6981 specific binding in the rostral and caudal striatum. Hence, MPTP lesion, L-DOPA treatment and prevention of LID with CI-1041 and cabergoline, or reduction with Ro 61-8048 were associated with modulation of NR2B/NMDA glutamate receptors.


NMDA receptor L-DOPA Dyskinesia MPTP Monkeys Cabergoline CI-1041 Ro 61-8048 





Dopamine Transporter


3, 4 dihydroxyphenylacetic acid


Homovanillic acid




L-DOPA-induced dyskinesias


long term depression


long term potentiation






Parkinson’s disease



This research was funded by a grant from the Canadian Institutes of Health Research to TDP. BO was supported by the Government of Ivory Coast and SB by the Government of Tunisia.


  1. Bara-Jimenez, W., Dimitrova, T. D., Sherzai, A., Aksu, M., & Chase, T. N. (2006). Glutamate release inhibition ineffective in levodopa-induced motor complications. Movement Disorders, 21, 1380–1383. doi: 10.1002/mds.20976.PubMedCrossRefGoogle Scholar
  2. Barria, A., & Malinow, R. (2002). Subunit-specific NMDA receptor trafficking to synapses. Neuron, 35, 345–353. doi: 10.1016/S0896-6273(02)00776-6.PubMedCrossRefGoogle Scholar
  3. Belanger, N., Gregoire, L., Hadj Tahar, A., & Bedard, P. J. (2003). Chronic treatment with small doses of cabergoline prevents dopa-induced dyskinesias in parkinsonian monkeys. Movement Disorders, 18, 1436–1441. doi: 10.1002/mds.10589.PubMedCrossRefGoogle Scholar
  4. Blanchet, P. J., Calon, F., Morissette, M., et al. (2004). Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism & Related Disorders, 10, 297–304. doi: 10.1016/j.parkreldis.2004.02.011.CrossRefGoogle Scholar
  5. Bliss, T., & Schoepfer, R. (2004). Neuroscience. Controlling the ups and downs of synaptic strength. Science, 304, 973–974. doi: 10.1126/science.1098805.PubMedCrossRefGoogle Scholar
  6. Brotchie, J. M., Lee, J., & Venderova, K. (2005). Levodopa-induced dyskinesia in Parkinson’s disease. Journal of Neural Transmission, 112, 359–391. doi: 10.1007/s00702-004-0251-7.PubMedCrossRefGoogle Scholar
  7. Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. The Lancet Neurology, 5, 974–983. doi: 10.1016/S1474-4422(06)70600-7.CrossRefGoogle Scholar
  8. Calon, F., Morissette, M., Ghribi, O., et al. (2002). Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26, 127–138. doi: 10.1016/S0278-5846(01)00237-8.CrossRefGoogle Scholar
  9. Calon, F., Rajput, A. H., Hornykiewicz, O., Bedard, P. J., & Di Paolo, T. (2003). Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiology of Disease, 14, 404–416. doi: 10.1016/j.nbd.2003.07.003.PubMedCrossRefGoogle Scholar
  10. Cepeda, C., Buchwald, N. A., & Levine, M. S. (1993). Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proceedings of the National Academy of Sciences of the United States of America, 90, 9576–9580. doi: 10.1073/pnas.90.20.9576.PubMedCrossRefGoogle Scholar
  11. Chase, T. N. (2004). Striatal plasticity and extrapyramidal motor dysfunction. Parkinsonism & Related Disorders, 10, 305–313. doi: 10.1016/j.parkreldis.2004.02.012.CrossRefGoogle Scholar
  12. Chen, L. R., Wesley, J. A., Bhattachar, S., Ruiz, B., Bahash, K., & Babu, S. R. (2003). Dissolution behavior of a poorly water soluble compound in the presence of Tween 80. Pharmaceutical Research, 20, 797–801. doi: 10.1023/A:1023493821302.PubMedCrossRefGoogle Scholar
  13. Desce, J. M., Godeheu, G., Galli, T., et al. (1992). L-glutamate-evoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience, 47, 333–339. doi: 10.1016/0306-4522(92)90249-2.PubMedCrossRefGoogle Scholar
  14. Deutch, A. Y. (1993). Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson’s disease. Journal of Neural Transmission, 91, 197–221. doi: 10.1007/BF01245232.PubMedCrossRefGoogle Scholar
  15. Dunah, A. W., Wang, Y., Yasuda, R. P., et al. (2000). Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Molecular Pharmacology, 57, 342–352.PubMedGoogle Scholar
  16. Erreger, K., Chen, P. E., Wyllie, D. J., & Traynelis, S. F. (2004). Glutamate receptor gating. Critical Reviews in Neurobiology, 16, 187–224. doi: 10.1615/CritRevNeurobiol.v16.i3.10.PubMedCrossRefGoogle Scholar
  17. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. The Journal of Physiology, 563, 345–358. doi: 10.1113/jphysiol.2004.080028.PubMedCrossRefGoogle Scholar
  18. Erreger, K., Geballe, M. T., Kristensen, A., et al. (2007). Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Molecular Pharmacology, 72, 907–920. doi: 10.1124/mol.107.037333.PubMedCrossRefGoogle Scholar
  19. Gerkin, R. C., Lau, P. M., Nauen, D. W., Wang, Y. T., & Bi, G. Q. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of Neurophysiology, 97, 2851–2862. doi: 10.1152/jn.00860.2006.PubMedCrossRefGoogle Scholar
  20. Gilgun-Sherki, Y., Melamed, E., Ziv, I., & Offen, D. (2003). Riluzole, an inhibitor of glutamatergic transmission, suppresses levodopa-induced rotations in 6-hydroxydopamine-lesioned rats. Pharmacology & Toxicology, 93, 54–56. doi: 10.1034/j.1600-0773.2003.930108.x.CrossRefGoogle Scholar
  21. Gregoire, L., Rassoulpour, A., Guidetti, P., et al. (2008). Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behavioural Brain Research, 186, 161–167. doi: 10.1016/j.bbr.2007.08.007.PubMedCrossRefGoogle Scholar
  22. Groc, L., Choquet, D., Stephenson, F. A., et al. (2007). NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. The Journal of Neuroscience, 27, 10165–10175. doi: 10.1523/JNEUROSCI.1772-07.2007.PubMedCrossRefGoogle Scholar
  23. Hadj Tahar, A., Gregoire, L., Darre, A., et al. (2004). Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiology of Disease, 15, 171–176. doi: 10.1016/j.nbd.2003.10.007.PubMedCrossRefGoogle Scholar
  24. Hallett, P. J., Dunah, A. W., Ravenscroft, P., et al. (2005). Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology, 48, 503–516. doi: 10.1016/j.neuropharm.2004.11.008.PubMedCrossRefGoogle Scholar
  25. He, L., Di Monte, D. A., Langston, J. W., & Quik, M. (2000). Autoradiographic analysis of N-methyl-D-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and levodopa treatment. Neuroscience, 99, 697–704. doi: 10.1016/S0306-4522(00)00235-9.PubMedCrossRefGoogle Scholar
  26. Hilmas, C., Pereira, E. F., Alkondon, M., et al. (2001). The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. The Journal of Neuroscience, 21, 7463–7473.PubMedGoogle Scholar
  27. Hurley, M. J., Jackson, M. J., Smith, L. A., Rose, S., & Jenner, P. (2005). Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. The European Journal of Neuroscience, 21, 3240–3250. doi: 10.1111/j.1460-9568.2005.04169.x.PubMedCrossRefGoogle Scholar
  28. Lavezzari, G., McCallum, J., Dewey, C. M., & Roche, K. W. (2004). Subunit-specific regulation of NMDA receptor endocytosis. The Journal of Neuroscience, 24, 6383–6391. doi: 10.1523/JNEUROSCI.1890-04.2004.PubMedCrossRefGoogle Scholar
  29. Maura, G., Carbone, R., & Raiteri, M. (1989). Aspartate-releasing nerve terminals in rat striatum possess D-2 dopamine receptors mediating inhibition of release. The Journal of Pharmacology and Experimental Therapeutics, 251, 1142–1146.PubMedGoogle Scholar
  30. Morissette, M., Dridi, M., Calon, F., et al. (2006). Prevention of levodopa-induced dyskinesias by a selective NR1A/2B N-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Movement Disorders, 21, 9–17. doi: 10.1002/mds.20654.PubMedCrossRefGoogle Scholar
  31. Moroni, F., Cozzi, A., Carpendo, R., et al. (2005). Kynurenine 3-mono-oxygenase inhibitors reduce glutamate concentration in the extracellular spaces of the basal ganglia but not in those of the cortex or hippocampus. Neuropharmacology, 48, 788–795. doi: 10.1016/j.neuropharm.2004.10.019.PubMedCrossRefGoogle Scholar
  32. Nemeth, H., Toldi, J., & Vecsei, L. (2005). Role of kynurenines in the central and peripheral nervous systems. Current Neurovascular Research, 2, 249–260. doi: 10.2174/1567202054368326.PubMedCrossRefGoogle Scholar
  33. Picconi, B., Centonze, D., Hakansson, K., et al. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience, 6, 501–506.PubMedGoogle Scholar
  34. Picconi, B., Pisani, A., Barone, I., et al. (2005). Pathological synaptic plasticity in the striatum: implications for Parkinson’s disease. Neurotoxicology, 26, 779–783. doi: 10.1016/j.neuro.2005.02.002.PubMedCrossRefGoogle Scholar
  35. Samadi, P., Gregoire, L., Morissette, M., et al. (2008). mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiology of Aging, 29, 1040–1051. doi: 10.1016/j.neurobiolaging.2007.02.005.PubMedCrossRefGoogle Scholar
  36. Samadi, P., Gregoire, L., Rassoulpour, A., et al. (2005). Effect of kynurenine 3-hydroxylase inhibition on the dyskinetic and antiparkinsonian responses to levodopa in Parkinsonian monkeys. Movement Disorders, 20, 792–802. doi: 10.1002/mds.20596.PubMedCrossRefGoogle Scholar
  37. Samuel, D., Errami, M., & Nieoullon, A. (1990). Localization of N-methyl-D-aspartate receptors in the rat striatum: effects of specific lesions on the [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding. Journal of Neurochemistry, 54, 1926–1933. doi: 10.1111/j.1471-4159.1990.tb04893.x.PubMedCrossRefGoogle Scholar
  38. Schwab, R. S., England, A. C., Jr., Poskanzer, D. C., & Young, R. R. (1969). Amantadine in the treatment of Parkinson’s disease. Journal of the American Medical Association, 208, 1168–1170. doi: 10.1001/jama.208.7.1168.PubMedCrossRefGoogle Scholar
  39. Schwarcz, R., & Pellicciari, R. (2002). Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. The Journal of Pharmacology and Experimental Therapeutics, 303, 1–10. doi: 10.1124/jpet.102.034439.PubMedCrossRefGoogle Scholar
  40. Stone, T. W. (2000). Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends in Pharmacological Sciences, 21, 149–154. doi: 10.1016/S0165-6147(00)01451-6.PubMedCrossRefGoogle Scholar
  41. Szabo, J., & Cowan, W. M. (1984). A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). The Journal of Comparative Neurology, 222, 265–300. doi: 10.1002/cne.902220208.PubMedCrossRefGoogle Scholar
  42. Thanvi, B., Lo, N., & Robinson, T. (2007). Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgraduate Medical Journal, 83, 384–388. doi: 10.1136/pgmj.2006.054759.PubMedCrossRefGoogle Scholar
  43. Tovar, K. R., & Westbrook, G. L. (2002). Mobile NMDA receptors at hippocampal synapses. Neuron, 34, 255–264. doi: 10.1016/S0896-6273(02)00658-X.PubMedCrossRefGoogle Scholar
  44. Ulas, J., Weihmuller, F. B., Brunner, L. C., et al. (1994). Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study. The Journal of Neuroscience, 14, 6317–6324.PubMedGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Bazoumana Ouattara
    • 1
    • 2
  • Samah Belkhir
    • 1
    • 2
  • Marc Morissette
    • 1
    • 2
  • Mehdi Dridi
    • 1
    • 2
  • Pershia Samadi
    • 1
    • 2
  • Laurent Grégoire
    • 1
    • 2
  • Leonard T. Meltzer
    • 3
  • Thérèse Di Paolo
    • 1
    • 2
  1. 1.Molecular Endocrinology and Oncology Research CenterLaval University Medical Center, CHULQuebecCanada
  2. 2.Faculty of PharmacyLaval UniversityQuebecCanada
  3. 3.Global Research & DevelopmentPfizerAnn ArborUSA

Personalised recommendations