Journal of Molecular Neuroscience

, Volume 37, Issue 3, pp 225–237 | Cite as

Quantitative Assessment of Neuronal Differentiation in Three-dimensional Collagen Gels Using Enhanced Green Fluorescence Protein Expressing PC12 Pheochromocytoma Cells

  • Hadar Arien-Zakay
  • Shimon Lecht
  • Anat Perets
  • Blair Roszell
  • Peter I. Lelkes
  • Philip LazaroviciEmail author


There is a paucity of quantitative methods for evaluating the morphological differentiation of neuronal cells in a three-dimensional (3-D) system to assist in quality control of neural tissue engineering constructs for use in reparative medicine. Neuronal cells tend to aggregate in the 3-D scaffolds, hindering the application of two-dimensional (2-D) morphological methods to quantitate neuronal differentiation. To address this problem, we developed a stable transfectant green fluorescence protein (GFP)-PC12 neuronal cell model, in which the differentiation process in 3-D can be monitored with high sensitivity by fluorescence microscopy. Under 2-D conditions, the green cells showed collagen adherence, round morphology, proliferation properties, expression of the nerve growth factor (NGF) receptors TrkA and p75NTR, stimulation of extracellular signal-regulated kinase phosphorylation by NGF and were able to differentiate in a dose-dependent manner upon NGF treatment, like wild-type (wt)-PC12 cells. When grown within 3-D collagen gels, upon NGF treatment, the GFP-PC12 cells differentiated, expressing long neurite outgrowths. We describe here a new validated method to measure NGF-induced differentiation in 3-D. Having properties similar to those of wt-PC12 and an ability to grow and differentiate in 3-D structures, these highly visualized GFP-expressing PC12 cells may serve as an ideal model for investigating various aspects of differentiation to serve in neural engineering.


Green fluorescent PC12 cells NGF Neuronal differentiation Three-dimensional collagen gel 



This study was supported by grants from the Stein Family Foundation, Philadelphia, PA (PIL and PL), the Nanotechnology Institute of Southeastern Pennsylvania (PIL), and the United States–Israel Binational Science Foundation (PL). PL is affiliated with and supported in part by the David R. Bloom Center for Pharmacy and the Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel. SL is supported by an “Eshkol” fellowship from The Israel Ministry of Science, Culture and Sport.


  1. Arien-Zakay, H., Nagler, A., Galski, H., & Lazarovici, P. (2007). Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. Journal of Molecular Neuroscience, 32, 179–191. doi: 10.1007/s12031-007-0027-2.PubMedCrossRefGoogle Scholar
  2. Baldwin, S. P., Krewson, C. E., & Saltzman, W. M. (1996). PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. International Journal of Developmental Neuroscience, 14, 351–364. doi: 10.1016/0736-5748(96)00018-4.PubMedCrossRefGoogle Scholar
  3. Bieberich, E., & Anthony, G. E. (2004). Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosensors & Bioelectronics, 19, 923–931. doi: 10.1016/j.bios.2003.08.016.CrossRefGoogle Scholar
  4. Boldrin, L., Elvassore, N., Malerba, A., et al. (2007). Satellite cells delivered by micro-patterned scaffolds: A new strategy for cell transplantation in muscle diseases. Tissue Engineering, 13, 253–262. doi: 10.1089/ten.2006.0093.PubMedCrossRefGoogle Scholar
  5. Chao, M., Casaccia-Bonnefil, P., Carter, B., Chittka, A., Kong, H., & Yoon, S. O. (1998). Neurotrophin receptors: Mediators of life and death. Brain Research. Brain Research Reviews, 26, 295–301. doi: 10.1016/S0165-0173(97)00036-2.PubMedCrossRefGoogle Scholar
  6. Chia, S. M., Lin, P. C., Quek, C. H., et al. (2005). Engineering microenvironment for expansion of sensitive anchorage-dependent mammalian cells. Journal of Biotechnology, 118, 434–447. doi: 10.1016/j.jbiotec.2005.05.012.PubMedCrossRefGoogle Scholar
  7. Dietrich, F., & Lelkes, P. I. (2006). Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial–mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis, 9, 111–125. doi: 10.1007/s10456-006-9037-x.PubMedCrossRefGoogle Scholar
  8. Foley, J. D., Grunwald, E. W., Nealey, P. F., & Murphy, C. J. (2005). Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials, 26, 3639–3644. doi: 10.1016/j.biomaterials.2004.09.048.PubMedCrossRefGoogle Scholar
  9. Fujita, K., Lazarovici, P., & Guroff, G. (1989). Regulation of the differentiation of PC12 pheochromocytoma cells. Environmental Health Perspectives, 80, 127–142. doi: 10.2307/3430738.PubMedCrossRefGoogle Scholar
  10. Gomez, N., & Schmidt, C. E. (2007). Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension. Journal of Biomedical Materials Research. Part A, 81, 135–149. doi: 10.1002/jbm.a.31047.PubMedCrossRefGoogle Scholar
  11. Guo, Y., Li, M., Mylonakis, A., et al. (2007). Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromolecules, 8, 3025–3034. doi: 10.1021/bm070266z.PubMedCrossRefGoogle Scholar
  12. Guterman, E., Cheng, S., Palouian, K., Bidez, P. R., Lelkes, P. I., & Wei, Y. (2002). Peptide-modified electroactive polymers for tissue engineering applications. Polymer Preprints, 43, 766–767.Google Scholar
  13. Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., & Zhang, S. (2000). Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 97, 6728–6733. doi: 10.1073/pnas.97.12.6728.PubMedCrossRefGoogle Scholar
  14. Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10, 381–391. doi: 10.1016/S0959-4388(00)00092-1.PubMedCrossRefGoogle Scholar
  15. Katzir, I., Shani, J., Regev, K., Shabashov, D., & Lazarovici, P. (2002). A quantitative bioassay for nerve growth factor, using PC12 clones expressing different levels of trkA receptors. Journal of Molecular Neuroscience, 18, 251–264. doi: 10.1385/JMN:18:3:251.PubMedCrossRefGoogle Scholar
  16. Kirchner, L. M., Schmidt, S. P., & Gruber, B. S. (1996). Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvascular Research, 51, 2–14. doi: 10.1006/mvre.1996.0002.PubMedCrossRefGoogle Scholar
  17. Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., & Guroff, G. (1988). K-252a: A specific inhibitor of the action of nerve growth factor on PC 12 cells. The Journal of Neuroscience, 8, 715–721.PubMedGoogle Scholar
  18. Kosaka, Y., Kobayashi, N., Fukazawa, T., et al. (2004). Lentivirus-based gene delivery in mouse embryonic stem cells. Artificial Organs, 28, 271–277. doi: 10.1111/j.1525-1594.2004.47297.x.PubMedCrossRefGoogle Scholar
  19. Laketa, V., Simpson, J. C., Bechtel, S., Wiemann, S., & Pepperkok, R. (2007). High-content microscopy identifies new neurite outgrowth regulators. Molecular Biology of the Cell, 18, 242–252. doi: 10.1091/mbc.E06-08-0666.PubMedCrossRefGoogle Scholar
  20. Lazarovici, P., Gazit, A., Staniszewska, I., Marcinkiewicz, C., & Lelkes, P. I. (2006). Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium, 13, 51–59. doi: 10.1080/10623320600669053.PubMedCrossRefGoogle Scholar
  21. Leach, J. B., Brown, X. Q., Jacot, J. G., Dimilla, P. A., & Wong, J. Y. (2007). Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. Journal of Neural Engineering, 4, 26–34. doi: 10.1088/1741-2560/4/2/003.PubMedCrossRefGoogle Scholar
  22. Levenberg, S., Burdick, J. A., Kraehenbuehl, T., & Langer, R. (2005). Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Engineering, 11, 506–512. doi: 10.1089/ten.2005.11.506.PubMedCrossRefGoogle Scholar
  23. Lopez, C. A., Fleischman, A. J., Roy, S., & Desai, T. A. (2006). Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells. Biomaterials, 27, 3075–3083. doi: 10.1016/j.biomaterials.2005.12.017.PubMedCrossRefGoogle Scholar
  24. Mahoney, M. J., Chen, R. R., Tan, J., & Saltzman, W. M. (2005). The influence of microchannels on neurite growth and architecture. Biomaterials, 26, 771–778. doi: 10.1016/j.biomaterials.2004.03.015.PubMedCrossRefGoogle Scholar
  25. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., & Torbett, B. E. (1999). Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science, 283, 682–686. doi: 10.1126/science.283.5402.682.PubMedCrossRefGoogle Scholar
  26. Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., & Finck, C. M. (2007). A tissue-engineered model of fetal distal lung tissue. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L639–L650. doi: 10.1152/ajplung.00403.2006.PubMedCrossRefGoogle Scholar
  27. Moxon, K. A., Hallman, S., Aslani, A., Kalkhoran, N. M., & Lelkes, P. I. (2007). Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Journal of Biomaterials Science. Polymer Edition, 18, 1263–1281. doi: 10.1163/156856207782177882.PubMedCrossRefGoogle Scholar
  28. Niell, C. M., & Smith, S. J. (2004). Live optical imaging of nervous system development. Annual Review of Physiology, 66, 771–798. doi: 10.1146/annurev.physiol.66.082602.095217.PubMedCrossRefGoogle Scholar
  29. Nikolaychik, V. V., Samet, M. M., & Lelkes, P. I. (1996). A new method for continual quantitation of viable cells on endothelialized polyurethanes. Journal of Biomaterials Science. Polymer Edition, 7, 881–891. doi: 10.1163/156856296X00057.PubMedCrossRefGoogle Scholar
  30. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319. doi: 10.1016/S0014-5793(97)00313-X.PubMedCrossRefGoogle Scholar
  31. Park, K. H., & Yun, K. (2004). Immobilization of Arg-Gly-Asp (RGD) sequence in a thermosensitive hydrogel for cell delivery using pheochromocytoma cells (PC12). Journal of Bioscience and Bioengineering, 97, 374–377.PubMedGoogle Scholar
  32. Pittier, R., Sauthier, F., Hubbell, J. A., & Hall, H. (2005). Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices. Journal of Neurobiology, 63, 1–14. doi: 10.1002/neu.20116.PubMedCrossRefGoogle Scholar
  33. Pittman, R. N., & DiBenedetto, A. J. (1995). PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix. Journal of Neurochemistry, 64, 566–575.PubMedCrossRefGoogle Scholar
  34. Ravni, A., Bourgault, S., Lebon, A., et al. (2006). The neurotrophic effects of PACAP in PC12 cells: Control by multiple transduction pathways. Journal of Neurochemistry, 98, 321–329. doi: 10.1111/j.1471-4159.2006.03884.x.PubMedCrossRefGoogle Scholar
  35. Sales, V. L., Mettler, B. A., Lopez-Ilasaca, M., Johnson Jr, J. A., & Mayer Jr., J. E. (2007). Endothelial progenitor and mesenchymal stem cell-derived cells persist in tissue-engineered patch in vivo: Application of green and red fluorescent protein-expressing retroviral vector. Tissue Engineering, 13, 525–535. doi: 10.1089/ten.2006.0128.PubMedCrossRefGoogle Scholar
  36. Saltzman, W. M., Parkhurst, M. R., Parsons-Wingerter, P., & Zhu, W. H. (1992). Three-dimensional cell cultures mimic tissues. Annals of the New York Academy of Sciences, 665, 259–273. doi: 10.1111/j.1749-6632.1992.tb42590.x.PubMedCrossRefGoogle Scholar
  37. Schenke-Layland, K., Riemann, I., Damour, O., Stock, U. A., & Konig, K. (2006). Two-photon microscopes and in vivo multiphoton tomographs—Powerful diagnostic tools for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 58, 878–896. doi: 10.1016/j.addr.2006.07.004.PubMedCrossRefGoogle Scholar
  38. Simons, D. M., Gardner, E. M., & Lelkes, P. I. (2006). Dynamic culture in a rotating-wall vessel bioreactor differentially inhibits murine T-lymphocyte activation by mitogenic stimuli upon return to static conditions in a time-dependent manner. Journal of Applied Polymer Science, 100, 1287–1292. doi: 10.1152/japplphysiol.00887.2005.Google Scholar
  39. Sirk, D. P., Zhu, Z., Wadia, J. S., & Mills, L. R. (2003). Flow cytometry and GFP: A novel assay for measuring the import and turnover of nuclear-encoded mitochondrial proteins in live PC12 cells. Cytometry. Part A, 56, 15–22.CrossRefGoogle Scholar
  40. Suzuki, T., Matsuzaki, T., Hagiwara, H., Aoki, T., & Takata, K. (2007). Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochemica et Cytochemica, 40, 131–137. doi: 10.1267/ahc.07023.PubMedCrossRefGoogle Scholar
  41. Takezawa, T., Takeuchi, T., Nitani, A., et al. (2007). Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. Journal of Biotechnology, 131, 76–83. doi: 10.1016/j.jbiotec.2007.05.033.PubMedCrossRefGoogle Scholar
  42. Takman, R., Jiang, H., Schaefer, E., Levine, R. A., & Lazarovici, P. (2004). Nerve growth factor pretreatment attenuates oxygen and glucose deprivation-induced c-Jun amino-terminal kinase 1 and stress-activated kinases p38alpha and p38beta activation and confers neuroprotection in the pheochromocytoma PC12 Model. Journal of Molecular Neuroscience, 22, 237–250. doi: 10.1385/JMN:22:3:237.PubMedCrossRefGoogle Scholar
  43. Tan, W., Vinegoni, C., Norman, J. J., Desai, T. A., & Boppart, S. A. (2007). Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microscopy Research and Technique, 70, 361–371. doi: 10.1002/jemt.20420.PubMedCrossRefGoogle Scholar
  44. Tatard, V. M., Venier-Julienne, M. C., Benoit, J. P., Menei, P., & Montero-Menei, C. N. (2004). In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells. Cell Transplantation, 13, 573–583. doi: 10.3727/000000004783983675.PubMedCrossRefGoogle Scholar
  45. Tohill, M. P., Mann, D. J., Mantovani, C. M., Wiberg, M., & Terenghi, G. (2004). Green fluorescent protein is a stable morphological marker for Schwann cell transplants in bioengineered nerve conduits. Tissue Engineering, 10, 1359–1367.PubMedGoogle Scholar
  46. Vaudry, D., Stork, P. J., Lazarovici, P., & Eiden, L. E. (2002). Signaling pathways for PC12 cell differentiation: Making the right connections. Science, 296, 1648–1649. doi: 10.1126/science.1071552.PubMedCrossRefGoogle Scholar
  47. Willits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science. Polymer Edition, 15, 1521–1531. doi: 10.1163/1568562042459698.PubMedCrossRefGoogle Scholar
  48. Yu, X., Dillon, G. P., & Bellamkonda, R. B. (1999). A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Engineering, 5, 291–304. doi: 10.1089/ten.1999.5.291.PubMedCrossRefGoogle Scholar
  49. Zhou, G., Liu, W., Cui, L., Wang, X., Liu, T., & Cao, Y. (2006). Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Engineering, 12, 3209–3221. doi: 10.1089/ten.2006.12.3209.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Hadar Arien-Zakay
    • 1
  • Shimon Lecht
    • 1
  • Anat Perets
    • 2
  • Blair Roszell
    • 2
  • Peter I. Lelkes
    • 2
  • Philip Lazarovici
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA

Personalised recommendations