Journal of Molecular Neuroscience

, Volume 37, Issue 1, pp 50–59

Involvement of Src Tyrosine Kinases (SFKs) and of Focal Adhesion Kinase (FAK) in the Injurious Mechanism in Rat Primary Neuronal Cultures Exposed to Chemical Ischemia

  • Vered Shani
  • Yael Bromberg
  • Oded Sperling
  • Esther Zoref-Shani


Src family of kinases (SFKs) and focal adhesion kinase (FAK) are two important cellular signaling components known to act cooperatively in the transduction of death and survival signals. We investigated the involvement of these proteins in the mechanism of the injurious response in rat primary neuronal cultures exposed to an insult composed of chemical ischemia (poisoning with iodoacetic acid; 100 μM, for 150 min) followed by 1 h of incubation in the regular medium, an insult shown before to be associated with generation of reactive oxygen species and with the depletion of adenosine triphisphate. The exposure of the neuronal cultures to the insult resulted in cell injury, assessed by the increased release of cytoplasmic lactate dehydrogenase (LDH) into the culture media, which could be attenuated markedly by the presence of the antioxidant LY 231617. The insult resulted in the decreased level of phosphorylation of the SFKs members Src, Fyn, and Yes at the Src Y416-equivalent activation sites and of the FAK Y397 activation site, degradation of FAK to a p85 fragment, and disassembling of the FAK–SFKs complexes. The inhibition of SFKs was found to be responsible for part of the insult-induced cell damage manifested in increased LDH release. Pervanadate, an inhibitor of the phosphotyrosine phosphatases (PTPs), abrogated the inactivation of SFKs and attenuated cell injury, indicating that insult-induced activation of PTPs is involved in SFKs inhibition and the ensued damage. The inhibition of SFKs and FAK is probably the cause of the disassembling of SFKs–FAK complexes, a process known to be associated with apoptosis.


Src tyrosine kinases Src Fyn Yes Focal adhesion kinase (FAK) Phosphotyrosine phosphatases (PTPs) Reactive oxygen species (ROS) 


  1. Abu-Ghazaleh, R., Kabir, J., Jia, H., Lobo, M., & Zachry, I. (2001). Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. The Biochemical Journal, 360, 255–264.PubMedCrossRefGoogle Scholar
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  3. Cheung, R. T. (2003). The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. Journal of Pineal Research, 34, 153–160.PubMedCrossRefGoogle Scholar
  4. Chiang, G. G., & Sefton, B. M. (2000). Phosphorylation of a Src kinase at the autophosphorylation site in the absence of Src kinase activity. The Journal of Biological Chemistry, 275, 6055–6058.PubMedCrossRefGoogle Scholar
  5. Choi, J. S., Kim, H. Y., Chung, J. W., Chun, M. H., Kim, S. Y., Yoon, S. H., et al. (2005). Activation of Src tyrosine kinase in microglia in the rat hippocampus following transient forebrain ischemia. Neuroscience Letters, 380, 1–5.PubMedCrossRefGoogle Scholar
  6. Dahmani, S., Rouelle, D., Gressens, P., & Mantz, J. (2005). Effects of Dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions. Anesthesiology, 103, 969–977.PubMedCrossRefGoogle Scholar
  7. Dahmani, S., Tesniere, A., Rouelle, D., Desmonts, J. M., & Mantz, J. (2004). Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated Focal Adhesion Kinase (pp125 FAK) content induced by oxygen–glucose deprivation. British Journal of Anaesthesia, 93, 270–274.PubMedCrossRefGoogle Scholar
  8. Dawn, B., Takano, H., Tang, X. L., et al. (2002). Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 283, H549–H556.PubMedGoogle Scholar
  9. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedGoogle Scholar
  10. Gervais, F. G., Thornberry, N. A., Ruffolo, S. C., Nicholson, D. W., & Roy, S. (1998). Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. The Journal of Biological Chemistry, 273, 17102–17108.PubMedCrossRefGoogle Scholar
  11. Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., & Chiarugi, P. (2005). Intracellular reactive oxygen species activate src tyrosine kinase during call adhesion and anchorage-dependent cell growth. Molecular and Cellular Biology, 15, 6391–6403.CrossRefGoogle Scholar
  12. Girault, J. A., Costa, A., Derkinderen, P., Studler, J. M., & Toutant, M. (1999). FAK and PYK2/CAKβ in the nervous system: A link between neuronal activity, plasticity and survival? Trends in Neurosciences, 22, 257–263.PubMedCrossRefGoogle Scholar
  13. Guo, J., Meng, F., Zhang, G., & Zhang, Q. (2003). Free radicals are involved in continuous activation of nonreceptor tyrosine protein kinase c-Src after ischemia/reperfusion in rat hippocampus. Neuroscience Letters, 345, 101–104.PubMedCrossRefGoogle Scholar
  14. Hashimoto, R., Fujimaki, K., Jeong, M. R., Christ, L., & Chuang, D. (2003). Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Letters, 538, 145–148.PubMedCrossRefGoogle Scholar
  15. Hattori, R., Otani, H., Uchiyama, T., Imamura, H., Cui, J., Maulik, N., et al. (2001). Src tyrosine kinase is the triger but not the mediator of ischemic preconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 281, H1066–H1074.PubMedGoogle Scholar
  16. Head, B. P., Patel, H. H., Tsutsumi, Y. M., et al. (2008). Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. The FASEB Journal, 22, 828–840.PubMedCrossRefGoogle Scholar
  17. Kelicen, P., Cantuti-Castelvetri, I., Pekiner, C., & Paulson, K. E. (2002). The spin trapping agent PBN stimulates H2O2-induced Erk and Src kinase activity in human neuroblastoma cells. Neurorepor, 13, 1057–1061.CrossRefGoogle Scholar
  18. Krieg, T., Qin, Q., McIntosh, E. C., Cohen, M. V., & Downey, J. M. (2002). ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2322–H2330.PubMedGoogle Scholar
  19. Lietha, D., Xinming, C., Derek, F. J. C., Yiqun, L., Schaller, M. D., & Eck, M. J. (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129, 1177–1187.PubMedCrossRefGoogle Scholar
  20. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.PubMedGoogle Scholar
  21. Ludwig, L. M., Weihrauch, D., Kersten, J. R., Pagel, P. S., & Warltier, D. C. (2004). Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology, 100, 532–539.PubMedCrossRefGoogle Scholar
  22. Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: In command and control of cell motility. Nature, 6, 56–68.Google Scholar
  23. Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK–Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedCrossRefGoogle Scholar
  24. Nakka, V. P., Gusain, A., Mehta, S. L., & Raghubir, R. (2008). Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities. Molecular Neurobiology, 37, 7–38.PubMedCrossRefGoogle Scholar
  25. Park, S. S., Eom, Y. W., Kim, E. H., et al. (2004). Involvement of c-Src kinase in the regulation of TGF-b1 induced apoptosis. Oncogene, 23, 6272–6281.PubMedCrossRefGoogle Scholar
  26. Ping, P., Song, C., Zhang, J., et al. (2002). Formation of protein kinase C(epsilon)–Lck signaling modules confers cardioprotection. The Journal of Clinical Investigation, 109, 499–507.PubMedGoogle Scholar
  27. Pei, L., Li, Y., Yan, J. Z., Zhang, G. Y., Cui, Z. C., & Zhu, Z. M. (2000). Changes and mechanisms of protein-tyrosine kinase and protein-tyrosine phosphatase activities after brain ischemia/reperfusion. Acta Pharmacologica Sinica, 21, 715–720.PubMedGoogle Scholar
  28. Pumiglia, K. M., Lau, L. F., Huang, C. K., Burroughs, S., & Feinstein, M. B. (1992). Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). The Biochemical Journal, 286(Pt 2), 441–449.PubMedGoogle Scholar
  29. Reshef, A., Sperling, O., & Zoref-Shani, E. (2000). The adenosine-induced mechanism for the acquisition of ischemic tolerance in primary rat neuronal cultures. Pharmacology & Therapeutics, 87, 151–159.CrossRefGoogle Scholar
  30. Roskoski, R. (2004). Src protein-tyrosine kinase structure and regulation. Biochemical and Biophysical Research Communications, 324, 1155–1164.PubMedCrossRefGoogle Scholar
  31. Roskoski, R. (2005). Src kinase regulation by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 331, 1–14.PubMedCrossRefGoogle Scholar
  32. Sperling, O., Bromberg, Y., Oelsner, H., & Zoref-Shani, E. (2003). Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neuroscience Letters, 351, 137–140.PubMedCrossRefGoogle Scholar
  33. Sun, G., Sharma, A. K., & Budde, R. J. (1998). Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation. Oncogene, 17, 1587–1595.PubMedCrossRefGoogle Scholar
  34. Wang, S. J. (2003). A role for Src kinase in the regulation of glutamate release from rat cerebrocortical nerve terminals. Neuroreport, 14, 1519–1522.PubMedCrossRefGoogle Scholar
  35. Wen, L. P., Fahrni, J. A., Troie, S., Guan, J. L., Orth, K., & Rosen, G. D. (1997). Cleavage of focal adhesion kinase by caspases during apoptosis. The Journal of Biological Chemistry, 272, 26056–26061.PubMedCrossRefGoogle Scholar
  36. Zalewska, T., Makarewicz, D., Janik, B., & Ziemka-Nalecz, M. (2005). Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. International Journal of Developmental Neuroscience, 23, 657–662.PubMedCrossRefGoogle Scholar
  37. Ziemka-Nalecz, M., & Zalewska, T. (2007). Transient forebrain ischemia effects FAK-coupled signaling in gerbil hippocampus. Neurochemistry International, 51, 405–411.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Vered Shani
    • 1
  • Yael Bromberg
    • 1
  • Oded Sperling
    • 1
  • Esther Zoref-Shani
    • 1
  1. 1.Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations