Advertisement

Journal of Molecular Neuroscience

, Volume 36, Issue 1–3, pp 26–37 | Cite as

Inhibitory Effect of PACAP on Caspase Activity in Neuronal Apoptosis: A Better Understanding Towards Therapeutic Applications in Neurodegenerative Diseases

  • Agnieszka Dejda
  • Valérie Jolivel
  • Steve Bourgault
  • Tommy Seaborn
  • Alain Fournier
  • Hubert VaudryEmail author
  • David VaudryEmail author
Article

Abstract

Programmed cell death, which is part of the normal development of the central nervous system, is also implicated in various neurodegenerative disorders. Cysteine-dependent aspartate-specific proteases (caspases) play a pivotal role in the cascade of events leading to apoptosis. Many factors that inhibit cell death have now been identified, but the underlying mechanisms are not fully understood. Pituitary adenylate cylase-activating polypeptide (PACAP) has been shown to exert neurotrophic activities during development and to prevent neuronal apoptosis induced by various insults such as ischemia. Most of the neuroprotective effects of PACAP are mediated through the PAC1 receptor. This receptor activates a transduction cascade of second messengers to stimulate Bcl-2 expression, which inhibits cytochrome c release and blocks the activation of caspases. The inhibitory effect of PACAP on the apoptotic cascade suggests that selective, stable, and potent PACAP derivatives could potentially be of therapeutic value for the treatment of post-traumatic and/or chronic neurodegenerative processes.

Keywords

Apoptosis Caspase PACAP Neuroprotection 

Notes

Acknowledgments

Supported by INSERM (U413), the European Institute for Peptide Research (IFRMP23), the Regional Platform for Cell Imaging (PFRRICHN), the National Research Agency (ANR-06-JCJC-0071), the Institut pour la Recherche sur la Moelle épinière et l′Encéphale (IRME), the Institut de Recherches Scientifiques sur les Boissons (IREB), and the Conseil Régional de Haute-Normandie. A.D. is the recipient of a postdoctoral fellowship from the Fondation pour la Recherche Médicale. V.J. is the recipient of a Convention Industrielle de Formation par la Recherche (CIFRE). S.B. is the recipient of a doctoral studentship from the Natural Sciences and Engineering Research Council of Canada. T.S. is the recipient of a postdoctoral fellowship from INSERM. H.V. is Affiliated Professor at the INRS-Institute Armand-Frappier (Montreal, Canada).

References

  1. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., & Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Molecular Cell, 9, 423–432.PubMedGoogle Scholar
  2. Adams, J. M., & Cory, S. (1998). The Bcl-2 protein family: Arbiters of cell survival. Science, 281, 1322–1326.PubMedGoogle Scholar
  3. Ahmad, M., Srinivasula, S. M., Wang, L., et al. (1997). CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Research, 57, 615–619.PubMedGoogle Scholar
  4. Allais, A., Burel, D., Isaac, E. R., et al. (2007). Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. European Journal of Neuroscience, 25, 2604–2618.PubMedGoogle Scholar
  5. Allen, J. W., Eldadah, B. A., Huang, X., Knoblach, S. M., & Faden, A. I. (2001). Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. Journal of Neuroscience Research, 65, 45–53.PubMedGoogle Scholar
  6. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., et al. (1996). Human ICE/CED-3 protease nomenclature. Cell, 87, 171.PubMedGoogle Scholar
  7. Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 48, 301–331.PubMedGoogle Scholar
  8. Aubert, N., Basille, M., Falluel-Morel, A., et al. (2005). PACAP protects granule cells against apoptosis induced by hypoxia in monkey cerebellum slices. Regulatory Peptides, 130, 156.Google Scholar
  9. Aubert, N., Falluel-Morel, A., Vaudry, D., et al. (2006). PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: Involvement of c-Fos in PACAP-induced Bcl-2 expression. Journal of Neurochemistry, 99, 1237–1250.PubMedGoogle Scholar
  10. Banks, W. A., Kastin, A. J., Komaki, G., & Arimura, A. (1993). Passage of pituitary adenylate cyclase activating polypeptide1–27 and pituitary adenylate cyclase activating polypeptide1–38 across the blood–brain barrier. Journal of Pharmacology and Experimental Therapeutics, 26777, 690–696.Google Scholar
  11. Basille, M., Gonzalez, B. J., Fournier, A., & Vaudry, H. (1994). Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: A quantitative autoradiographic study. Developmental Brain Research, 82, 81–89.PubMedGoogle Scholar
  12. Basille, M., Gonzalez, B. J., Leroux, P., Jeandel, L., Fournier, A., & Vaudry, H. (1993). Localization and characterization of PACAP receptors in the rat cerebellum during development: Evidence for a stimulatory effect of PACAP on immature cerebellar granule cells. Neuroscience, 57, 329–338.PubMedGoogle Scholar
  13. Beebe, X., Darczak, D., Davis-Taber, R. A., et al. (2008). Discovery and SAR of hydrazide antagonists of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor type 1 (PAC(1)-R). Bioorganic & Medicinal Chemistry Letters, 18, 2162–2166.Google Scholar
  14. Bhave, S. V., & Hoffman, P. L. (2004). Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: Modulation by ethanol. Journal of Neurochemistry, 88, 359–369.PubMedCrossRefGoogle Scholar
  15. Birk, S., Sitarz, J. T., Petersen, K. A., et al. (2007). The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regulatory Peptides, 140, 185–191.PubMedGoogle Scholar
  16. Bourgault, S., Vaudry, D., Botia, B., et al. (2008). Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides, in press, DOI  10.1016/j.peptides.2008.01.022.
  17. Braun, J. S., Prass, K., Dirnagl, U., Meisel, A., & Meisel, C. (2007). Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Experimental Neurology, 206, 183–191.PubMedGoogle Scholar
  18. Cameron, D. B., Galas, L., Jiang, Y., Raoult, E., Vaudry, D., & Komuro, H. (2007). Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience, 146, 697–712.PubMedGoogle Scholar
  19. Cao, G., Luo, Y., Nagayama, T., et al. (2002). Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 22, 534–546.PubMedGoogle Scholar
  20. Cavallaro, S., Copani, A., D’Agata, V., et al. (1996). Pituitary adenylate cyclase activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Molecular Pharmacology, 50, 60–66.PubMedGoogle Scholar
  21. Chang, J. Y., Korolev, V. V., & Wang, J. Z. (1996). Cyclic AMP and pituitary adenylate cyclase-activating polypeptide (PACAP) prevent programmed cell death of cultured rat cerebellar granule cells. Neuroscience Letters, 206, 181–184.PubMedGoogle Scholar
  22. Chang, H. Y., & Yang, X. (2000). Proteases for cell suicide: Functions and regulation of caspases. Microbiology and Molecular Biology Reviews, 64, 821–846.PubMedGoogle Scholar
  23. Chauvier, D., Lecoeur, H., Langonne, A., et al. (2005). Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis, 10, 1243–1259.PubMedGoogle Scholar
  24. Chen, J., Nagayama, T., Jin, K., et al. (1998). Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. Journal of Neuroscience, 18, 4914–4928.PubMedGoogle Scholar
  25. Chen, Y., Samal, B., Hamelink, C. R., et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptides, 137, 4–19.PubMedGoogle Scholar
  26. Chen, W. H., & Tzeng, S. F. (2005). Pituitary adenylate cyclase-activating polypeptide prevents cell death in the spinal cord with traumatic injury. Neuroscience Letters, 384, 117–121.PubMedGoogle Scholar
  27. Clark, R. S. B., Kochanek, P. M., Chen, M., et al. (1999). Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB Journal, 13, 813–821.PubMedGoogle Scholar
  28. Clark, R. S. B., Kochanek, P. M., Watkins, S. C., et al. (2000). Caspase-3 mediated neuronal death after traumatic brain injury in rats. Journal of Neurochemistry, 74, 740–753.PubMedGoogle Scholar
  29. Datta, S. R., Dudek, H., Tao, X., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91, 231–241.PubMedGoogle Scholar
  30. Davoli, M. A., Fourtounis, J., Tam, J., et al. (2002). Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience, 115, 125–136.PubMedGoogle Scholar
  31. Dejda, A., Sokolowska, P., & Nowak, J. Z. (2005). Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacological Reports, 57, 307–320.PubMedGoogle Scholar
  32. Deveraux, Q. L., Takahashi, R., Salvesen, G. S., & Reed, J. C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature, 388, 300–304.PubMedGoogle Scholar
  33. Doberer, D., Gschwandtner, M., Mosgoeller, W., Bieglmayer, C., Heinzl, H., & Petkov, V. (2007). Pulmonary and systemic effects of inhaled PACAP38 in healthy male subjects. European Journal of Clinical Investigation, 37, 665–672.PubMedGoogle Scholar
  34. Dohi, K., Mizushima, H., Nakajo, S., et al. (2002). Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regulatory Peptides, 109, 83–88.PubMedGoogle Scholar
  35. Downward, J. (1999). How BAD phosphorylation is good for survival. Nature Cell Biology, 1, 33–35.Google Scholar
  36. Duan, H., & Dixit, V. M. (1997). RAIDD is a new ‘death’ adaptor molecule. Nature, 385, 86–89.PubMedGoogle Scholar
  37. Ellis, H. M., & Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell, 44, 817–829.PubMedGoogle Scholar
  38. Engidawork, E., Gulesserian, T., Yoo, B. C., Cairns, N., & Lubec, G. (2001). Alterations of caspases and apoptosis-related proteins in brains of patients with Alzheimer’s disease. Biochemical and Biophysical Research Communications, 281, 84–93.PubMedGoogle Scholar
  39. Falluel-Morel, A., Aubert, N., Vaudry, D., et al. (2004). Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. Journal of Neurochemistry, 91, 1231–1243.PubMedGoogle Scholar
  40. Farkas, O., Tamas, A., Zsombok, A., et al. (2004). Effects of pituitary adenylate cyclase-activating polypeptide in a rat model of traumatic brain injury. Regulatory Peptides, 123, 69–75.PubMedGoogle Scholar
  41. Fink, K. B., Andrews, L. J., Butler, W. E., et al. (1999). Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience, 94, 1213–1218.PubMedGoogle Scholar
  42. Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J., & Yuan, J. (1997). Inhibition of ICE slows ALS in mice. Nature, 338, 31.Google Scholar
  43. Gao, Z., Tian, Y., Wang, J., et al. (2007). A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. Journal of Biological Chemistry, 282, 30718–30727.PubMedGoogle Scholar
  44. Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A., & Vaudry, H. (1997). Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78, 419–430.PubMedGoogle Scholar
  45. Graf, D., Bode, J. G., & Haussinger, D. (2007). Caspases and receptor cleavage. Archives of Biochemistry and Biophysics, 462, 162–170.PubMedGoogle Scholar
  46. Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T., & Alnemri, E. S. (2002). Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. Journal of Biological Chemistry, 277, 13430–13437.PubMedGoogle Scholar
  47. Hakem, R., Hakem, A., Duncan, G. S., et al. (1998). Differential requirement for caspase 9 in apoptotic pathway in vivo. Cell, 94, 339–352.PubMedGoogle Scholar
  48. Han, P., & Lucero, M. T. (2005). Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience, 134, 745–756.PubMedGoogle Scholar
  49. Hara, H., Fink, K., Endres, M., et al. (1997). Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. Journal of Cerebral Blood Flow and Metabolism, 17, 370–375.PubMedGoogle Scholar
  50. Harada, J., & Sugimoto, M. (1999). Activation of caspase-3 in b-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Research, 842, 311–323.PubMedGoogle Scholar
  51. Hengartner, M. O., Ellis, R. E., & Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 356, 494–499.PubMedGoogle Scholar
  52. Hermel, E., Gafni, J., Propp, S. S., et al. (2004). Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death and Differentiation, 11, 424–438.PubMedGoogle Scholar
  53. Hitomi, J., Katayama, T., Eguchi, Y., et al. (2004a). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Ab-induced cell death. Journal of Cell Biology, 165, 347–356.PubMedGoogle Scholar
  54. Hitomi, J., Katayama, T., Taniguchi, M., Honda, A., Imaizumi, K., & Tohyama, M. (2004b). Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neuroscience Letters, 357, 127–130.PubMedGoogle Scholar
  55. Inoue, H., Tsukita, K., Iwasato, T., et al. (2003). The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO Journal, 22, 6665–6674.PubMedGoogle Scholar
  56. Journot, L., Villalba, M., & Bockaert, J. (1998). PACAP-38 protects cerebellar granule cells from apoptosis. Annals of the New York Academy of Sciences, 865, 100–110.PubMedGoogle Scholar
  57. Kang, S. J., Wang, S., Hara, H., et al. (2000). Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. Journal of Cell Biology, 149, 613–622.PubMedGoogle Scholar
  58. Kang, S. J., Wang, S., Kuida, K., & Yuan, J. (2002). Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death and Differentiation, 9, 1115–1125.PubMedGoogle Scholar
  59. Katahira, M., Yone, K., Arishima, Y., et al. (2003). The neuroprotective effects of PACAP on spinal cord injury (SCI) in rats. Regulatory Peptides, 115, 49.Google Scholar
  60. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239–257.PubMedGoogle Scholar
  61. Kischkel, F. C., Hellbardt, S., Behrmann, I., et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO Journal, 14, 5579–5588.PubMedGoogle Scholar
  62. Klevenyi, P., Andreassen, O., Ferrante, R. J., Schleicher, J. R., Jr., Friendlander, R. M., & Beal, M. F. (1999). Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport, 10, 635–638.PubMedGoogle Scholar
  63. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., & Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132–1136.PubMedGoogle Scholar
  64. Knoblach, S. M., Huang, X., VanGelderen, J., Calva-Cerqueira, D., & Faden, A. I. (2005). Selective caspase activation may contribute to neurological dysfunction after experimental spinal cord trauma. Journal of Neuroscience Research, 80, 369–380.PubMedGoogle Scholar
  65. Kuida, K., Haydar, T. F., Kuan, C. Y., et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell, 94, 325–337.PubMedGoogle Scholar
  66. Kuida, K., Zheng, T. S., Na, S., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–372.PubMedGoogle Scholar
  67. Le, D. A., Wu, Y., Huang, Z., et al. (2002). Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15188–15193.PubMedGoogle Scholar
  68. Lerner, E. A., Ribeiro, J. M., Nelson, R. J., & Lerner, M. R. (1991). Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Journal of Biological Chemistry, 266, 11234–11236.PubMedGoogle Scholar
  69. Li, M., David, C., Kikuta, T., Somogyvari-Vigh, A., & Arimura, A. (2005). Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. Journal of Molecular Neuroscience, 27, 91–105.PubMedGoogle Scholar
  70. Li, M., Maderdrut, J. L., Lertora, J. J., & Batuman, V. (2007). Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides, 28, 1891–1895.PubMedGoogle Scholar
  71. Li, P., Nijhawan, D., Budihardjo, I., et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479–489.PubMedGoogle Scholar
  72. Li, M., Ona, V. O., Chen, M., et al. (2000a). Function role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience, 99, 333–342.PubMedGoogle Scholar
  73. Li, M., Ona, V. O., Guegan, C., et al. (2000b). Functional role of caspase-1 and caspase-3 in ALS transgenic mouse model. Science, 288, 335–339.PubMedGoogle Scholar
  74. Liu, H., Chang, D. W., & Yang, X. (2005). Interdimer processing and linearity of procaspase-3 activation. Journal of Biological Chemistry, 280, 11578–11582.PubMedGoogle Scholar
  75. Liu, X. H., Kwon, D., Schielke, G. P., Yang, G. Y., Silverstein, F. S., & Barks, J. D. E. (1999). Mice Deficient in Interleukin-1 converting enzyme are resistant to neonatal hypoxic–ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 19, 1099–1108.PubMedGoogle Scholar
  76. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94, 481–490.PubMedGoogle Scholar
  77. Luthi, A. U., & Martin, S. J. (2007). The CASBAH: A searchable database of caspase substrates. Cell Death and Differentiation, 14, 641–650.PubMedGoogle Scholar
  78. Malagelada, C., Xifro, X., Minano, A., Sabria, J., & Rodriguez-Alvarez, J. (2005). Contribution of caspase-mediated apoptosis to the cell death caused by oxygen-glucose deprivation in cortical cell cultures. Neurobiology of Disease, 20, 27–37.PubMedGoogle Scholar
  79. Martin, D. A., Siegel, R. M., Zheng, L., & Lenardo, M. J. (1998). Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. Journal of Biological Chemistry, 273, 4345–4349.PubMedGoogle Scholar
  80. Masuo, Y., Tokito, F., Matsumoto, Y., Shimamoto, N., & Fujino, M. (1994). Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) and its binding sites in the rat brain. Neuroscience Letters, 170, 43–46.PubMedGoogle Scholar
  81. Matsui, T., Ramasamy, K., Ingelsson, M., et al. (2006). Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: Relationship to formic acid extractable abeta42 levels. Journal of Neuropathology and Experimental Neurology, 65, 508–515.PubMedGoogle Scholar
  82. Mei, Y. A., Vaudry, D., Basille, M., et al. (2004). PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: Evidence for the involvement of I K in the anti-apoptotic action of PACAP. European Journal of Neuroscience, 19, 1446–1458.PubMedGoogle Scholar
  83. Mentlein, R. (1999). Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regulatory Peptides, 85, 9–24.PubMedGoogle Scholar
  84. Morio, H., Tatsuno, I., Hirai, A., Tamura, Y., & Saito, Y. (1996). Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Research, 741, 82–88.PubMedGoogle Scholar
  85. Nakagawa, T., Zhu, H., Morishima, N., et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 403, 98–103.PubMedGoogle Scholar
  86. Namura, S., Zhu, J., Fink, K., et al. (1998). Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. Journal of Neuroscience, 18, 3659–3668.PubMedGoogle Scholar
  87. Nandha, K. A., Benito-Orfila, M. A., Smith, D. M., Ghatei, M. A., & Bloom, S. R. (1991). Action of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on the rat vascular system: Effects on blood pressure and receptor binding. Journal of Endocrinology, 129, 69–73.PubMedCrossRefGoogle Scholar
  88. Ni, B., Wu, X., Su, Y., et al. (1998). Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons. Journal of Cerebral Blood Flow and Metabolism, 18, 248–256.PubMedGoogle Scholar
  89. Niewiadomski, P., Nowak, J. Z., Sedkowska, P., & Zawilska, J. B. (2002). Rapid desensitization of receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) in chick cerebral cortex. Polish Journal of Pharmacology, 54, 717–721.PubMedGoogle Scholar
  90. Obeng, E. A., & Boise, L. H. (2005). Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. Journal of Biological Chemistry, 280, 29578–29587.PubMedGoogle Scholar
  91. Ohtaki, H., Nakamachi, T., Dohi, K., et al. (2005). Neuroprotective mechanism of PACAP after focal ischemia in mouse. Regulatory Peptides, 130, 149.Google Scholar
  92. Ohtaki, H., Nakamachi, T., Dohi, K., et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proceedings of the National Academy of Sciences of the United States of America, 103, 7488–7493.PubMedGoogle Scholar
  93. Ona, V. O., Li, M., Vonsattel, J. P. G., et al. (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 399, 263–267.PubMedGoogle Scholar
  94. Onoue, S., Endo, K., Ohshima, K., Yajima, T., & Kashimoto, K. (2002a). The neuropeptide PACAP attenuates beta-amyloid (1–42)-induced toxicity in PC12 cells. Peptides, 23, 1471–1478.PubMedGoogle Scholar
  95. Onoue, S., Ohshima, K., Endo, K., Yajima, T., & Kashimoto, K. (2002b). PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106–126. FEBS Letters, 522, 65–70.PubMedGoogle Scholar
  96. Onyuksel, H., Sejourne, F., Suzuki, H., & Rubinstein, I. (2006). Human VIP-alpha: A long-acting, biocompatible and biodegradable peptide nanomedicine for essential hypertension. Peptides, 27, 2271–2275.PubMedGoogle Scholar
  97. Peter, M. E., & Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death and Differentiation, 10, 26–35.PubMedGoogle Scholar
  98. Rabuffetti, M., Sciorati, C., Tarozzo, G., Clementi, E., Manfredi, A. A., & Beltramo, M. (2000). Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. Journal of Neuroscience, 20, 4398–4404.PubMedGoogle Scholar
  99. Racz, B., Gallyas, F., Jr., Kiss, P., et al. (2006). The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways. Regulatory Peptides, 137, 20–26.PubMedGoogle Scholar
  100. Rao, R. V., Castro-Obregon, S., Frankowski, H., et al. (2002). Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. Journal of Biological Chemistry, 277, 21836–21842.PubMedGoogle Scholar
  101. Reglodi, D., Lubics, A., Tamas, A., Szalontay, L., & Lengvari, I. (2004). Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease. Behavioural Brain Research, 151, 303–312.PubMedGoogle Scholar
  102. Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Kozicz, T., & Arimura, A. (2000). Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke, 31, 1411–1417.PubMedGoogle Scholar
  103. Reglodi, D., Tamas, A., Somogyvari-Vigh, A., et al. (2002). Effects of pretreament with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides, 23, 2227–2234.PubMedGoogle Scholar
  104. Renatus, M., Stennicke, H. R., Scott, F. L., Liddington, R. C., & Salvesen, G. S. (2001). Dimer formation drives the activation of the cell death protease caspase 9. Proceedings of the National Academy of Sciences of the United States of America, 98, 14250–14255.PubMedGoogle Scholar
  105. Renolleau, S., Fau, S., Goyenvalle, C., et al. (2007). Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: A role for gender. Journal of Neurochemistry, 100, 1062–1071.PubMedGoogle Scholar
  106. Robberecht, P., Gourlet, P., De Nef, P., et al. (1992). Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. European Journal of Biochemistry, 207, 239–246.PubMedGoogle Scholar
  107. Rohn, T. T., Head, E., Nesse, W. H., Cotman, C. W., & Cribbs, D. H. (2001). Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiology of Disease, 8, 1006–1016.PubMedGoogle Scholar
  108. Rohn, T. T., Rissman, R. A., Davis, M. C., Kim, Y. E., Cotman, C. W., & Head, E. (2002). Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiology of Disease, 11, 341–354.PubMedGoogle Scholar
  109. Sakamaki, K., Inoue, T., Asano, M., et al. (2002). Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death and Differentiation, 9, 1196–1206.PubMedGoogle Scholar
  110. Samantaray, S., Knaryan, V. H., Guyton, M. K., Matzelle, D. D., Ray, S. K., & Banik, N. L. (2007). The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience, 146, 741–755.PubMedGoogle Scholar
  111. Sanchez, I., Xu, C. J., Juo, P., Kakizaka, A., Blenis, J., & Yuan, J. (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron, 22, 623–633.PubMedGoogle Scholar
  112. Sawangjaroen, K., Dallemagne, C. R., Cross, R. B., & Curlewis, J. D. (1992). Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) on the cardiovascular system in sheep. Peptides, 13, 1029–1032.PubMedGoogle Scholar
  113. Schielke, G. P., Yang, G. Y., Shivers, B. D., & Betz, A. L. (1998). Reduced ischemic brain injury in interleukin-1b converting enzyme-deficient mice. Journal of Cerebral Blood Flow and Metabolism, 18, 180–185.PubMedGoogle Scholar
  114. Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Reviews, 21, 619–670.PubMedGoogle Scholar
  115. Shi, G. X., Rehmann, H., & Andres, D. A. (2006). A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Molecular and Cellular Biology, 26, 9136–9147.PubMedGoogle Scholar
  116. Shibata, M., Hattori, H., Sasaki, T., Gotoh, J., Hamada, J., & Fukuuchi, Y. (2003). Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience, 118, 491–499.PubMedGoogle Scholar
  117. Shioda, S., Ozawa, H., Dohi, K., et al. (1998). PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway. Annals of the New York Academy of Sciences, 865, 111–117.PubMedGoogle Scholar
  118. Springer, J. E., Azbill, R. D., & Knapp, P. E. (1999). Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature Medicine, 5, 943–946.PubMedGoogle Scholar
  119. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., & Alnemri, E. S. (1998). Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Molecular Cell, 1, 949–957.PubMedGoogle Scholar
  120. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., et al. (1998). Pro-caspase-3 is a major physiologic target of caspase-8. Journal of Biological Chemistry, 273, 27084–27090.PubMedGoogle Scholar
  121. Stumm, R., Kolodziej, A., Prinz, V., Endres, M., Wu, D. F., & Hollt, V. (2007). Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. Journal of Neurochemistry, 103, 1666–1681.PubMedGoogle Scholar
  122. Sun, C., Song, D., Davis-Taber, R. A., et al. (2007). Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proceedings of the National Academy of Sciences of the United States of America, 104, 7875–7880.PubMedGoogle Scholar
  123. Suzuki, H., Noda, Y., Paul, S., Gao, X. P., & Rubinstein, I. (1995). Encapsulation of vasoactive intestinal peptide into liposomes: effects on vasodilation in vivo. Life Sciences, 57, 1451–1457.PubMedGoogle Scholar
  124. Tamas, A., Lubics, L., Lengvari, I., & Reglodi, D. (2006a). Protective effects of PACAP in excitotoxic striatal lesion. Annals of the New York Academy of Sciences, 1070, 570–574.PubMedGoogle Scholar
  125. Tamas, A., Zsombok, A., Farkas, O., et al. (2006b). Postinjury administration of pituitary adenylate cyclase-activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. Journal of Neurotrauma, 23, 686–695.PubMedGoogle Scholar
  126. Thornberry, N. A., & Lazebnik, Y. (1998). Caspases: Enemies within. Science, 281, 1312–1316.PubMedGoogle Scholar
  127. Timmer, J. C., & Salvesen, G. S. (2007). Caspase substrates. Cell Death and Differentiation, 14, 66–72.PubMedGoogle Scholar
  128. Tinel, A., & Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science, 304, 843–846.PubMedGoogle Scholar
  129. Tokuda, E., Ono, S., Ishige, K., et al. (2007). Dysequilibrium between caspases and their inhibitors in a mouse model for amyotrophic lateral sclerosis. Brain Research, 1148, 234–242.PubMedGoogle Scholar
  130. Troy, C. M., Rabacchi, S. A., Friedman, W. J., Frappier, T. F., Brown, K., & Shelanski, M. L. (2000). Caspase-2 mediates neuronal cell death induced by beta-amyloid. Journal of Neuroscience, 20, 1386–1392.PubMedGoogle Scholar
  131. Uchida, D., Arimura, A., Somogyvári-Vigh, A., Shioda, S., & Banks, W. A. (1996). Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Research, 736, 280–286.PubMedGoogle Scholar
  132. Vaudry, D., Cottet-Rousselle, C., Basille, M., et al. (2004). Pituitary adenylate cyclase-activating polypeptide inhibits caspase-3 activity but does not protect cerebellar granule neurons against b-amyloid (25–35)induced apoptosis. Regulatory Peptides, 123, 43–49.PubMedGoogle Scholar
  133. Vaudry, D., Falluel-Morel, A., Basille, M., et al. (2003a). Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. Journal of Neuroscience Research, 72, 303–316.PubMedGoogle Scholar
  134. Vaudry, D., Falluel-Morel, A., Leuillet, S., Vaudry, H., & Gonzalez, B. J. (2003b). Regulators of cerebellar granule cell development act through specific signaling pathways. Science, 300, 1532–1534.PubMedGoogle Scholar
  135. Vaudry, D., Gonzalez, B. J., Basille, M., Anouar, Y., Fournier, A., & Vaudry, H. (1998). Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience, 84, 801–812.PubMedGoogle Scholar
  136. Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (1999). Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proceedings of the National Academy of Sciences of the United States of America, 96, 9415–9420.PubMedGoogle Scholar
  137. Vaudry, D., Gonzalez, B. J., Basille, M., et al. (2000a). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proceedings of the National Academy of Sciences of the United States of America, 97, 13390–13395.PubMedGoogle Scholar
  138. Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000b). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.PubMedGoogle Scholar
  139. Vaudry, D., Pamantung, T. F., Basille, M., et al. (2002a). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.PubMedGoogle Scholar
  140. Vaudry, D., Rousselle, C., Basille, M., et al. (2002b). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 6398–6403.PubMedGoogle Scholar
  141. Vaudry, D., Stork, P. J., Lazarovici, P., & Eiden, L. E. (2002c). Signaling pathways for PC12 cell differentiation: making the right connections. Science, 296, 1648–1649.PubMedGoogle Scholar
  142. Villalba, M., Bockaert, J., & Journot, L. (1997). Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. Journal of Neuroscience, 17, 83–90.PubMedGoogle Scholar
  143. Wang, S., Miura, M., Jung, Y. K., Zhu, H., Li, E., & Yuan, J. (1998). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell, 92, 501–509.PubMedGoogle Scholar
  144. Wang, G., Qi, Ch., Fan, G. H., Zhou, H. Y., & Chen, S. D. (2005). PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Letters, 579, 4005–4011.PubMedGoogle Scholar
  145. Yakovlev, A. G., Knoblach, S. M., Fan, L., Fox, G. B., Goodnight, R., & Faden, A. I. (1997). Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. Journal of Neuroscience, 17, 7415–7424.PubMedGoogle Scholar
  146. Yang, J., Liu, X., Bhalla, K., et al. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275, 1129–1132.PubMedGoogle Scholar
  147. Yuan, J., & Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–809.PubMedGoogle Scholar
  148. Zhang, Y., Leavitt, B. R., van Raamsdonk, J. M., et al. (2006). Huntingtin inhibits caspase-3 activation. EMBO Journal, 25, 5896–5906.PubMedGoogle Scholar
  149. Zhou, P., Chou, J., Olea, R. S., Yuan, J., & Wagner, G. (1999). Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptor/caspase interaction. Proceedings of the National Academy of Sciences of the United States of America, 96, 11265–11270.PubMedGoogle Scholar
  150. Zhu, L., Tamvakopoulos, C., Xie, D., et al. (2003). The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: In vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). Journal of Biological Chemistry, 278, 22418–22423.PubMedGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Agnieszka Dejda
    • 1
    • 2
    • 3
    • 4
  • Valérie Jolivel
    • 1
    • 2
    • 3
    • 5
  • Steve Bourgault
    • 1
    • 2
    • 3
    • 6
  • Tommy Seaborn
    • 1
    • 2
    • 3
  • Alain Fournier
    • 3
    • 6
  • Hubert Vaudry
    • 1
    • 2
    • 3
    Email author
  • David Vaudry
    • 1
    • 2
    • 3
    Email author
  1. 1.INSERM U413, Laboratory of Cellular and Molecular NeuroendocrinologyMont-Saint-AignanFrance
  2. 2.European Institute for Peptide Research (IFRMP 23)University of RouenMont-Saint-AignanFrance
  3. 3.International Associated Laboratory Samuel de ChamplainMont-Saint-AignanFrance
  4. 4.Institute for Medical BiologyPolish Academy of SciencesLodzPoland
  5. 5.QUIDD (QUantitative Imaging in Drug Development)Saint-Etienne-du-RouvrayFrance
  6. 6.INRS—Institut Armand-FrappierInstitut National de la Recherche Scientifiquedes PrairiesCanada

Personalised recommendations