Exaggerated Expression of Inflammatory Mediators in Vasoactive Intestinal Polypeptide Knockout (VIP−/−) Mice with Cyclophosphamide (CYP)-Induced Cystitis

  • Beatrice M. Girard
  • Susan E. Malley
  • Karen M. Braas
  • James A. Waschek
  • Victor May
  • Margaret A. Vizzard


Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide distributed in micturition pathways. VIP−/− mice exhibit altered bladder function and neurochemical properties in micturition pathways after cyclophosphamide (CYP)-induced cystitis. Given VIP’s role as an anti-inflammatory mediator, we hypothesized that VIP−/− mice would exhibit enhanced inflammatory mediator expression after cystitis. A mouse inflammatory cytokine and receptor RT2 profiler array was used to determine regulated transcripts in the urinary bladder of wild type (WT) and VIP−/− mice with or without CYP-induced cystitis (150 mg/kg; i.p.; 48 h). Four binary comparisons were made: WT control versus CYP treatment (48 h), VIP−/− control versus CYP treatment (48 h), WT control versus VIP−/− control, and WT with CYP treatment (48 h) versus VIP−/− with CYP treatment (48 h). The genes presented represent (1) greater than 1.5-fold change in either direction and (2) the p value is less than 0.05 for the comparison being made. Several regulated genes were validated using enzyme-linked immunoassays including IL-1β and CXCL1. CYP treatment significantly (p ≤ 0.001) increased expression of CXCL1 and IL-1β in the urinary bladder of WT and VIP−/− mice, but expression in VIP−/− mice with CYP treatment was significantly (p ≤ 0.001) greater (4.2- to 13-fold increase) than that observed in WT urinary bladder (3.6- to 5-fold increase). The data suggest that in VIP−/− mice with bladder inflammation, inflammatory mediators are increased above that observed in WT with CYP. This shift in balance may contribute to increased bladder dysfunction in VIP−/− mice with bladder inflammation and altered neurochemical expression in micturition pathways.


Micturition Cytokines Chemokines Inflammation 



This work was funded by NIH grants DK051369, DK060481, and DK065989. The authors gratefully acknowledge the technical expertise and support provided for the superarray by the Vermont Cancer Center DNA Analysis Facility. This project was also supported by NIH Grant Number P20 RR16435 from the COBRE Program of the National Center for Research Resources.


  1. Ahn, S. Y., Cho, C. H., Park, K. G., et al. (2004). Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. American Journal of Pathology, 164, 1663–1672.PubMedGoogle Scholar
  2. Anderson, L. C., & Rao, R. D. (2001). Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Archives of Oral Biology, 46, 633–640.PubMedCrossRefGoogle Scholar
  3. Baba, H., Doubell, T. P., & Woolf, C. J. (1999). Peripheral inflammation facilitates A beta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. Journal of Neuroscience, 19, 859–867.PubMedGoogle Scholar
  4. Bartfai, T., & Schultzberg, M. (1993). Cytokines in neuronal cell types. Neurochemistry International, 22, 435–444.PubMedCrossRefGoogle Scholar
  5. Bazan, J. F., Bacon, K. B., Hardiman, G., et al. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature, 385, 640–644.PubMedCrossRefGoogle Scholar
  6. Braas, K. M., May, V., Zvara, P., et al. (2006). Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290, R951–962.PubMedGoogle Scholar
  7. Burch, R. M., Connor, J. R., & Axelrod, J. (1993). Interleukin-1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 85, 6306–6309.CrossRefGoogle Scholar
  8. Castellani, M. L., Bhattacharya, K., Tagen, M., et al. (2007). Anti-chemokine therapy for inflammatory diseases. International Journal of Immunopathology and Pharmacology, 20, 447–453.PubMedGoogle Scholar
  9. Chancellor, M. B., & Yoshimura, N. (2004). Treatment of interstitial cystitis. Urology, 63, 85–92.PubMedCrossRefGoogle Scholar
  10. Chapple, C. R., Milner, P., Moss, H. E., & Burnstock, G. (1992). Loss of sensory neuropeptides in the obstructed human bladder. British Journal of Urology, 70, 373–381.PubMedGoogle Scholar
  11. Chorny, A., Gonzalez-Rey, E., Varela, N., Robledo, G., & Delgado, M. (2006). Signaling mechanisms of vasoactive intestinal peptide in inflammatory conditions. Regulatory Peptides, 137, 67–74.PubMedCrossRefGoogle Scholar
  12. Colwell, C. S., Michel, S., Itri, J., et al. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 285, R939–949.PubMedGoogle Scholar
  13. Cominelli, F., & Pizarro, T. T. (1996). Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 10, 49–53.Google Scholar
  14. Debreceni, A., Okazuchi, O., Matsushima, Y., et al. (2001). mRNA expression of cytokines and chemokines in the normal gastric surface mucous epithelial cell line GSM06 during bacterial infection with Helicobacter felis. Journal of Physiology (Paris), 95, 461–467.CrossRefGoogle Scholar
  15. Delgado, M., Munoz-Elias, E. J., Gomariz, R. P., & Ganea, D. (1999). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. Journal of Immunology, 162, 1707–1716.Google Scholar
  16. Delgado, M., Gomariz, R. P., Martinez, C., Abad, C., & Leceta, J. (2000). Anti-inflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. European Journal of Immunology, 30, 3236–3246.PubMedCrossRefGoogle Scholar
  17. Dickinson, T., Mitchell, R., Robberecht, P., & Fleetwood-Walker, S. M. (1999). The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy. Neuropharmacology, 38, 167–180.PubMedCrossRefGoogle Scholar
  18. Dinarello, C. A. (1998). Overview of inflammatory cytokines and their role in pain. In: Watkins, L. R., & Maier, S. F. (eds.), pp 1–20. Boston: Birkhauser Verlag.Google Scholar
  19. Dinarello, C. A. D. (1997). Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest, 112, 321S–329S.PubMedCrossRefGoogle Scholar
  20. Dray, A. (1995). Inflammatory mediators of pain. British Journal of Anaesthesia, 75, 125–131.PubMedGoogle Scholar
  21. Driscoll, A., & Teichman, J. M. H. (2001). How do patients with interstitial cystitis present. Journal of Urology, 166, 2118–2120.PubMedCrossRefGoogle Scholar
  22. Eide, F. F., Lowenstein, D. H., & Reichardt, L. F. (1993). Neurotrophins and their receptors—current concepts and implications for neurologic disease. Experimental Neurology, 121, 200–214.PubMedCrossRefGoogle Scholar
  23. Ferreira, S. H., Lorenzetti, B. B., Bristow, A. F., & Poole, S. (1988). Interleukin-1-beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature, 334, 698–700.PubMedCrossRefGoogle Scholar
  24. Fong, A. M., Robinson, L. A., Steeber, D. A., et al. (1998). Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. Journal of Experimental Medicine, 188, 1413–1419.PubMedCrossRefGoogle Scholar
  25. Gadient, R. A., & Otten, U. H. (1997). Interleukin-6 (IL-6)—A molecule with both beneficial and destructive potentials. Progress in Neurobiology, 52, 379–390.PubMedCrossRefGoogle Scholar
  26. Garcia, G. E., Xia, Y., Chen, S., et al. (2000). NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. Journal of Leukocyte Biology, 67, 577–584.PubMedGoogle Scholar
  27. Geng, Y., Blanco, F. J., Corenelisson, M., & Lotz, M. (1995). Regulation of cyclooxygenase-2 expression in normal human chondrocytes. Journal of Immunology, 155, 796–801.Google Scholar
  28. Girard, B. A., Lelievre, V., Braas, K. M., et al. (2006). Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. Journal of Neurochemistry, 99, 499–513.PubMedCrossRefGoogle Scholar
  29. Harmar, A. J., Arimura, A., Gozes, I., et al. (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacological Reviews, 50, 265–270.PubMedGoogle Scholar
  30. Haskell, C. A., Cleary, M. D., & Charo, I. F. (2000). Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. Journal of Biological Chemistry, 275, 34183–34189.PubMedCrossRefGoogle Scholar
  31. Hill, J. K., Gunion-Riner, L., Kulhanek, D., et al. (1999). Temporal modulation of cytokine expression following focal cerebral ischemia in mice. Brain Research, 820, 45–54.PubMedCrossRefGoogle Scholar
  32. Ho, N., Koziol, J. A., & Parsons, C. L. (1997). Epidemiology of interstitial cystitis. In Interstitial Cystitis (pp. 9–16). Philadelphia: Lippincott-Raven.Google Scholar
  33. Hu, V. Y., Malley, S., Dattilio, A., Folsom, J. B., Zvara, P., & Vizzard, M. A. (2003). COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, R574–R585.PubMedGoogle Scholar
  34. Jennings, L. J., & Vizzard, M. A. (1999). Cyclophosphamide-induced inflammation of the urinary bladder alters electrical properties of small diameter afferent neurons from dorsal root ganglia. FASEB Journal, 13, A57.Google Scholar
  35. Jensen, D. G., Studeny, S., May, V., Waschek, J., & Vizzard, M. A. (2008). Expression of Phosphorylated cAMP Response Element Binding Protein (p-CREB) in Bladder Afferent Pathways in VIP(−/−) Mice with Cyclophosphamide (CYP)-Induced Cystitis. Journal of Molecular Neuroscience (in press).Google Scholar
  36. Johansson, S. L., Ogawa, K., & Fall, M. (1997). The pathology of interstitial cystitis. In Interstitial Cystitis (pp. 143–152). Philadelphia: Lippincott-Raven.Google Scholar
  37. Johnston, I. N., Milligan, E. D., Wieseler-Frank, J., et al. (2004). A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. Journal of Neuroscience, 24, 7353–7365.PubMedCrossRefGoogle Scholar
  38. Korsching, S. (1993). The neurotrophic factor concept: a reexamination. Journal of Neuroscience, 13, 2739–2748.PubMedGoogle Scholar
  39. LaBerge, J., Malley, S. E., Zvarova, K., & Vizzard, M. A. (2006). Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291, R692–703.PubMedGoogle Scholar
  40. Lasanen, L. T., Tammela, T. L., Liesi, P., Waris, T., & Polak, J. M. (1992). The effect of acute distension on vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP) immunoreactive nerves in the female rat urinary bladder. Urological Research, 20, 259–263.PubMedCrossRefGoogle Scholar
  41. Lentz, S. I., Knudson, C. M., Korsmeyer, S. J., & Snider, W. D. (1999). Neurotrophins support the development of diverse sensory axon morphologies. Journal of Neuroscience, 19, 1038–1048.PubMedGoogle Scholar
  42. Lindholm, D., Heumann, R., Meyer, M., & Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of the rat sciatic nerve. Nature, 330, 658–659.PubMedCrossRefGoogle Scholar
  43. Lindia, J. A., McGowan, E., Jochnowitz, N., & Abbadie, C. (2005). Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. Journal of Pain, 6, 434–438.PubMedCrossRefGoogle Scholar
  44. MacDermott, R. P. (1996). Alterations of the mucosal immune system in inflammatory bowel disease. Journal of Gastroenterology, 31, 907–916.PubMedCrossRefGoogle Scholar
  45. Maier, S. F., & Watkins, L. R. (1999). Bidirectional communication between the brain and the immune system: implications for behaviour. Animal Behaviour, 57, 741–751.CrossRefGoogle Scholar
  46. Malley, S. E., & Vizzard, M. A. (2002). Changes in urinary bladder cytokine mRNA and protein after cyclophosphamide-induced cystitis. Physiological Genomics, 9, 5–13.PubMedGoogle Scholar
  47. Marchand, F., Perretti, M., & McMahon, S. B. (2005). Role of the immune system in chronic pain. Nature Reviews Neuroscience, 6, 521–532.PubMedCrossRefGoogle Scholar
  48. Mason, J. L., Suzuki, K., Chaplin, D. D., & Matsushima, G. K. (2001). Interleukin-1 beta promotes repair of the CNS. Journal of Neuroscience, 21, 7046–7052.PubMedGoogle Scholar
  49. McMahon, S. B., Armanini, M. P., Ling, L. H., & Phillips, H. S. (1994). Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron, 12, 335–340.CrossRefGoogle Scholar
  50. Milligan, E. D., Zapata, V., Chacur, M., et al. (2004). Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. European Journal of Neuroscience, 20, 2294–2302.PubMedCrossRefGoogle Scholar
  51. Morgan, C. W., Ohara, P. T., & Scott, D. E. (1999). Vasoactive intestinal polypeptide in sacral primary sensory pathways in the cat. Journal of Comparative Neurology, 407, 381–394.PubMedCrossRefGoogle Scholar
  52. Nagarsekar, A., Hasday, J. D., & Singh, I. S. (2005). CXC chemokines: A new family of heat-shock proteins. Immunological Investigations, 34, 381–398.PubMedCrossRefGoogle Scholar
  53. Parkin, J., & Cohen, B. (2001). An overview of the immune system. The Lancet, 357, 1777–1789.CrossRefGoogle Scholar
  54. Petrone, R. L., Agha, A. H., Roy, J. B., & Hurst, R. E. (1995). Urodynamic findings in patients with interstitial cystitis. Journal of Urology, 153, 290A.Google Scholar
  55. Poole, S., & Woolf, C. J. (1998). Cytokine-nerve growth factor interactions in inflammatory hyperalgesia. In Cytokines and Pain (pp. 59–88). Boston: Birkhauser Verlag.Google Scholar
  56. Poole, S., de Queiroz Cunha, F., & Henriques Ferreira, S. (1998). Hyperalgesia from subcutaneous cytokines. In L. R. Watkins, & S. F. Maier (Eds.), Cytokines and Pain (pp. 59–88). Boston: Birkhauser Verlag.Google Scholar
  57. Qiao, L. Y., & Vizzard, M. A. (2002). Cystitis-induced upregulation of tyrosine kinase (TrkA, TrkB) receptor expression and phosphorylation in rat micturition pathways. Journal of Comparative Neurology, 454, 200–211.PubMedCrossRefGoogle Scholar
  58. Qiao, L. Y., & Vizzard, M. A. (2004). Up-regulation of phosphorylated CREB but not c-Jun in bladder afferent neurons in dorsal root ganglia after cystitis. Journal of Comparative Neurology, 469, 262–274.PubMedCrossRefGoogle Scholar
  59. Raychaudhuri, S., Jiang, W.-Y., & Farber, E. (2001). Cellular localization of fractalkine at sites of inflammation: antigen-presenting cells in psoriasis express high levels of fractalkine. British Journal of Dermatology, 144(6), 1105–1113.PubMedCrossRefGoogle Scholar
  60. Saban, M. R., Hellmich, H., Nguyen, N. B., Winston, J., Hammond, T. G., & Saban, R. (2001a). Time course of LPS- induced gene expression in a mouse model of genitourinary inflammation. Physiological Genomics, 5, 147–160.PubMedGoogle Scholar
  61. Saban, R. (2001). Gene-regulation during bladder neurogenic inflammation. Urology, 57, 103.PubMedCrossRefGoogle Scholar
  62. Saban, R., Saban, M. R., Nguyen, N. B., Hammmond, T. G., & Wershil, B. K. (2001b). Mast cell regulation of inflammation and gene expression during antigen-induced bladder inflammation in mice. Physiological Genomics, 10, 35–43.Google Scholar
  63. Said, S. I. (1991). Vasoactive intestinal polypeptide (VIP) in asthma. Annals of the New York Academy of Sciences, 629, 305–318.PubMedCrossRefGoogle Scholar
  64. Samad, T. A., Moore, K. A., Sapirstein, A., et al. (2001). Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410, 471–475.PubMedCrossRefGoogle Scholar
  65. Sant, G., & Hanno, P. M. (2001). Interstitial cystitis: current issues and controversies in diagnosis. Urology, 57, 82.PubMedCrossRefGoogle Scholar
  66. Sartor, R. B. (1991). Pathogenetic and clinical relevance of cytokines in inflammatory bowel disease. Immunologic Research, 10, 465–471.PubMedCrossRefGoogle Scholar
  67. Sartor, R. B. (1994). Cytokines in intestinal inflammation: pathophysiologic and clinical considerations. Gastroenterology, 106, 533–542.PubMedGoogle Scholar
  68. Snider, W. D., & Silos-Santiago, I. (1996). Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 395–403.PubMedCrossRefGoogle Scholar
  69. Sung, M. J., Kim, W., Ahn, S. Y., et al. (2005). Protective effect of {alpha}-Lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circulation Research, 97(9), 880–890.PubMedCrossRefGoogle Scholar
  70. Szema, A. M., Hamidi, S. A., Lyubsky, S., et al. (2006). Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. American Journal of Physiology. Lung Cellular and Molecular Physiology, 291, L880–886.PubMedCrossRefGoogle Scholar
  71. Unsicker, K., Reichert-Preibsch, H., & Wewetzer, K. (1992). Stimulation of neuron survival by basic FGF and CNTF is a direct effect and not mediated by non-neuronal cells: evidence from single cell cultures. Developmental Brain Research, 65, 285–288.PubMedCrossRefGoogle Scholar
  72. Vantini, G., & Skaper, S. D. (1992). Neurotrophic factors: from physiology to pharmacology. Pharmacological Research, 26, 1–15.PubMedCrossRefGoogle Scholar
  73. Verge, G. M., Milligan, E. D., Maier, S. F., Watkins, L. R., Naeve, G. S., & Foster, A. C. (2004). Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. European of Journal Neuroscience, 20, 1150–1160.CrossRefGoogle Scholar
  74. Vizzard, M. A. (1997). Increased expression of neuronal nitric oxide synthase in bladder afferent and spinal neurons following spinal cord injury. Developmental Neuroscience, 19, 232–246.PubMedCrossRefGoogle Scholar
  75. Vizzard, M. A. (2000a). Alterations in spinal Fos protein expression induced by bladder stimulation followng cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R1027–R1039.PubMedGoogle Scholar
  76. Vizzard, M. A. (2000b). Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Experimental Neurology, 161, 273–284.PubMedCrossRefGoogle Scholar
  77. Vizzard, M. A. (2000c). Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R1027–1039.PubMedGoogle Scholar
  78. Vizzard, M. A. (2000d). Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. Journal of Comparative Neurology, 420, 335–348.PubMedCrossRefGoogle Scholar
  79. Vizzard, M. A. (2001). Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. Journal of Chemical Neuroanatomy, 21, 125–138.PubMedCrossRefGoogle Scholar
  80. Vizzard, M. A., & de Groat, W. C. (1996). Increased expression of neuronal nitric oxide synthase (NOS) in bladder afferent pathways following chronic bladder irritation. Journal of Comparative Neurology, 370, 191–202.PubMedCrossRefGoogle Scholar
  81. Vizzard, M. A., & Boyle, M. M. (1999). Increased expression of growth-associated protein (GAP-43) in lower urinary tract pathways following cyclophosphamide (CYP)-induced cystitis. Brain Research, 844, 174–187.PubMedCrossRefGoogle Scholar
  82. Vizzard, M. A., Braas, K. M., Studeny, S., et al. (2007). Vasoactive intestinal polypeptide knockout (VIP−/−) mice exhibit altered bladder function and somatic sensitivity with cyclophosphamide (CYP)-induced cystitis. Journal of Molecular Neuroscience, 33, 311.Google Scholar
  83. Voice, J. K., Dorsam, G., Chan, R. C., Grinninger, C., Kong, Y., & Goetzl, E. J. (2002). Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regulatory Peptides, 109, 199–208.PubMedCrossRefGoogle Scholar
  84. Watkins, L. R., & Maier, S. F. (2002). Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiological Reviews, 82, 981–1011.PubMedGoogle Scholar
  85. Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: a driving force for pathological pain. Trends in Neurosciences, 24, 450–455.PubMedCrossRefGoogle Scholar
  86. Wieseler-Frank, J., Maier, S. F., & Watkins, L. R. (2004). Glial activation and pathological pain. Neurochemistry International, 45, 389–395.PubMedCrossRefGoogle Scholar
  87. Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L., & DeLeo, J. A. (2001). Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. Journal of Comparative Neurology, 439, 127–139.PubMedCrossRefGoogle Scholar
  88. Wong, M.-L., Rettori, V., McCann, S. M., & Licinio, J. (1997). Interleukin (IL) 1-beta, IL-1 receptor antagonist, IL-10 and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proceedings of the National Academy of Sciences of the United States of America, 94, 227–232.PubMedCrossRefGoogle Scholar
  89. Woolf, C. J., & Doubell, T. P. (1994). The pathophysiology of chronic pain-increased sensitivity to low threshold A-beta fiber inputs. Current Opinion in Neurobiology, 4, 525–534.PubMedCrossRefGoogle Scholar
  90. Yamashita, K., Imaizumi, T., Hatakeyama, M., et al. (2003). Effect of hypoxia on the expression of fractalkine in human endothelial cells. Tohoku Journal of Experimental Medicine, 200, 187–194.PubMedCrossRefGoogle Scholar
  91. Yoshimura, N., & de Groat, W. C. (1999). Increased excitability of afferent neurons innervating rat urinary bladder following chronic bladder inflammation. Journal of Neuroscience, 19, 4644–4653.PubMedGoogle Scholar
  92. Zvarova, K., & Vizzard, M. A. (2006). Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell & Tissue Research, 324, 213–224.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Beatrice M. Girard
    • 1
  • Susan E. Malley
    • 2
  • Karen M. Braas
    • 1
  • James A. Waschek
    • 3
  • Victor May
    • 1
  • Margaret A. Vizzard
    • 1
    • 2
  1. 1.Department of Anatomy and NeurobiologyUniversity of Vermont College of MedicineBurlingtonUSA
  2. 2.Department of NeurologyUniversity of Vermont College of MedicineBurlingtonUSA
  3. 3.University of CaliforniaLos AngelesUSA

Personalised recommendations