Advertisement

Journal of Molecular Neuroscience

, Volume 36, Issue 1–3, pp 241–244 | Cite as

Maxadilan, the PAC1 Receptor, and Leishmaniasis

  • Vemuri B. Reddy
  • Yhong Li
  • Ethan A. LernerEmail author
Article

Abstract

Maxadilan is a vasodilator peptide isolated from sand fly salivary glands. The vasodilator effects of maxadilan are mediated by the PAC1 receptor, although maxadilan and PACAP do not share sequence homology. Sand flies are the vector of the parasitic disease leishmaniasis. The peptide aids the sand fly in obtaining a blood meal while enhancing the infectivity of leishmania parasites transmitted by this arthropod vector. Aspects of maxadilan, PAC1, and leishmaniasis are discussed.

Keywords

Maxadilan Sand fly Leishmaniasis 

References

  1. Brodie, T. M., Smith, M. C., Morris, R. V., & Titus, R. G. (2007). Immunomodulatory effects of the Lutzomyia longipalpis salivary gland protein maxadilan on mouse macrophages. Infection and Immunity, 75, 2359–2365.PubMedCrossRefGoogle Scholar
  2. Gower Jr., W. R., Dietz, J. R., McCuen, R. W., Fabri, P. J., Lerner, E. A., & Schubert, M. L. (2003). Regulation of atrial natriuretic peptide secretion by cholinergic and PACAP neurons of the gastric antrum. American Journal of Physiology Gastrointestinal and Liver Physiology, 284, G68–74.PubMedGoogle Scholar
  3. Grevelink, S. A., Osborne, J., Loscalzo, J., & Lerner, E. A. (1995). Vasorelaxant and second messenger effects of maxadilan. Journal of Pharmacology and Experimental Therapeutics, 272, 33–37.PubMedGoogle Scholar
  4. Lanzaro, G. C., Lopes, A. H., Ribeiro, J. M., Shoemaker, C. B., Warburg, A., Soares, M., et al. (1999). Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Molecular Biology, 8, 267–275.PubMedCrossRefGoogle Scholar
  5. Lerner, E. A., Ribeiro, J. M., Nelson, R. J., & Lerner, M. R. (1991). Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Journal of Biological Chemistry, 266, 11234–11236.PubMedGoogle Scholar
  6. Lerner, E. A., & Shoemaker, C. B. (1992). Maxadilan. Cloning and functional expression of the gene encoding this potent vasodilator peptide. Journal of Biological Chemistry, 267, 1062–1066.PubMedGoogle Scholar
  7. Mercer, A., Ronnholm, H., Holmberg, J., Lundh, H., Heidrich, J., Zachrisson, O., et al. (2004). PACAP promotes neural stem cell proliferation in adult mouse brain. Journal of Neuroscience Research, 76, 205–215.PubMedCrossRefGoogle Scholar
  8. Milleron, R. S., Mutebi, J. P., Valle, S., Montoya, A., Yin, H., Soong, L., et al. (2004). Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene, 70, 286–293.PubMedGoogle Scholar
  9. Morris, R. V., Shoemaker, C. B., David, J. R., Lanzaro, G. C., & Titus, R. G. (2001). Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. Journal of Immunology, 167, 5226–5230.Google Scholar
  10. Moro, O., Tsomides, T. J., Tajima, M., & Lerner, E. A. (1995). Maxadilan binds to membrane fractions of brain tissue. Biochemical and Biophysical Research Communications, 216, 234–241.PubMedCrossRefGoogle Scholar
  11. Moro, O., Tajima, M., & Lerner, E. A. (1996). Receptors for the vasodilator maxadilan are expressed on selected neural crest and smooth muscle-derived cells. Insect Biochemistry and Molecular Biology, 26, 1019–1025.PubMedCrossRefGoogle Scholar
  12. Moro, O., & Lerner, E. A. (1997). Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. Journal of Biological Chemistry, 272, 966–970.PubMedCrossRefGoogle Scholar
  13. Moro, O., Wakita, K., Ohnuma, M., Denda, S., Lerner, E. A., & Tajima, M. (1999). Functional characterization of structural alterations in the sequence of the vasodilatory peptide maxadilan yields a pituitary adenylate cyclase-activating peptide type 1 receptor-specific antagonist. Journal of Biological Chemistry, 274, 23103–23110.PubMedCrossRefGoogle Scholar
  14. Nokihara, K., Yasuhara, T., Nakata, Y., Lerner, E. A., & Wray, V. (2007). Chemical synthesis of maxadilan, a non-mammalian potent vasodilatory peptide consisting of 61 amino acids with two disulfide bridges, and its related peptides. International Journal of Peptide Research and Therapeutics, 13, 377–386.CrossRefGoogle Scholar
  15. Pereira, P., Reddy, V. B., Kounga, K., Bello, Y., & Lerner, E. (2002). Maxadilan activates PAC1 receptors expressed in Xenopus laevis melanophores. Pigment Cell Research, 15, 461–466.PubMedCrossRefGoogle Scholar
  16. Qureshi, A. A., Asahina, A., Ohnuma, M., Tajima, M., Granstein, R. D., & Lerner, E. A. (1996). Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. American Journal of Tropical Medicine and Hygiene, 54, 665–671.PubMedGoogle Scholar
  17. Reddy, V. B., Iuga, A. O., Kounga, K., & Lerner, E. A. (2006). Functional analysis of recombinant mutants of maxadilan with a PAC1 receptor-expressing melanophore cell line. Journal of Biological Chemistry, 281, 16197–16201.PubMedCrossRefGoogle Scholar
  18. Ribeiro, J. M., Vachereau, A., Modi, G. B., & Tesh, R. B. (1989). A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Science, 243, 212–214.PubMedCrossRefGoogle Scholar
  19. Ribeiro, J. M., & Francischetti, I. M. (2003). Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annual Review of Entomology, 48, 73–88.PubMedCrossRefGoogle Scholar
  20. Soares, M. B., Titus, R. G., Shoemaker, C. B., David, J. R., & Bozza, M. (1998). The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. Journal of Immunology, 160, 1811–1816.Google Scholar
  21. Theodos, C. M., Ribeiro, J. M., & Titus, R. G. (1991). Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infection and Immunity, 59, 1592–1598.PubMedGoogle Scholar
  22. Titus, R. G., & Ribeiro, J. M. (1988). Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science, 239, 1306–1308.PubMedCrossRefGoogle Scholar
  23. Valenzuela, J. G., Belkaid, Y., Garfield, M. K., Mendez, S., Kamhawi, S., Rowton, E. D., Sacks, D. L., & Ribeiro, J. M. (2001). Toward a defined anti-Leishmania vaccine targeting vector antigens: Characterization of a protective salivary protein. Journal of Experimental Medicine, 194, 331–342.PubMedCrossRefGoogle Scholar
  24. Warburg, A., Saraiva, E., Lanzaro, G. C., Titus, R. G., & Neva, F. (1994). Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 345, 223–230.PubMedCrossRefGoogle Scholar
  25. Warren, J. B., Donnelly, L. E., Cullen, S., Roberston, B. E., Ghatei, M. A., Bloom, S. R., & MacDermot, J. (1991). Pituitary adenylate cyclase-activating polypeptide: a novel, long-lasting, endothelium-independent vasorelaxant. European Journal of Pharmacology, 197, 131–134.PubMedCrossRefGoogle Scholar
  26. Yamada, H., Watanabe, M., & Yada, T. (2004). Cytosolic Ca2+ responses to sub-picomolar and nanomolar PACAP in pancreatic beta-cells are mediated by VPAC2 and PAC1 receptors. Regulatory Peptide, 123, 147–153.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Cutaneous Biology Research Center, Department of DermatologyMassachusetts General HospitalCharelestonUSA

Personalised recommendations