Advertisement

Peroxiredoxin 2 is Involved in the Neuroprotective Effects of PACAP in Cultured Cerebellar Granule Neurons

  • Béatrice Botia
  • Damien Seyer
  • Aurélia Ravni
  • Magalie Bénard
  • Anthony Falluel-Morel
  • Pascal Cosette
  • Thierry Jouenne
  • Alain Fournier
  • Hubert VaudryEmail author
  • Bruno J. Gonzalez
  • David VaudryEmail author
Article

Abstract

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is known to counteract in vitro the deleterious effects of toxic agents on cerebellar granule cell survival and differentiation. The potent antiapoptotic action of PACAP is mediated through inhibition of caspase-3 activity; however, additional proteins are likely involved and remain to be identified. Two-dimensional gel electrophoresis analysis coupled with mass spectrometry characterization led to the identification of a protein, peroxiredoxin 2, which was induced after a 6-h treatment with PACAP. Western blot analysis confirmed the regulation of peroxiredoxin 2 by PACAP and revealed that this protein is induced by both cyclic AMP and protein kinase C stimulators. Inhibition of peroxiredoxin 2 expression, using two distinct small-interfering RNAs (siRNAs), reduced the effect of PACAP on caspase-3 activity and cerebellar granule cell survival. Peroxiredoxin 2 expression was also induced in vivo and in vitro by ethanol. Although ethanol and PACAP exert opposite effects on caspase-3 activity, inhibition of peroxiredoxin 2 expression, using siRNAs, only reduced the ability of PACAP to prevent ethanol-induced caspase-3 activity. Taken together, these data indicate that peroxiredoxin 2 is probably involved in the neurotrophic effect of PACAP and suggest that this protein may have a therapeutic potential for the treatment of some neurodegenerative diseases.

Keywords

Peroxiredoxin 2 Pituitary adenylate cyclase-activating polypeptide Ethanol Cerebellar granule neurons Caspase-3 Two-dimensional electrophoresis 

Abbreviations

2-D

two-dimensional

PACAP

pituitary adenylate cyclase-activating polypeptide

PMA

phorbol 12-myristate 13-acetate

Prx 2

peroxiredoxin 2

Notes

Acknowledgments

This work was supported by INSERM (U413), the European Institute for Peptide Research (IFRMP23), the Institut de Recherches Scientifiques sur les Boissons (IREB), an Interreg 3A FEDER project, the ANR (06-JCJC-0071), and the Conseil Régional de Haute-Normandie. The work was conducted with the technical support of the proteomic facility of the IFRMP23 and the Platform for Cell Imaging of Haute-Normandie. BB was a recipient of a doctoral fellowship from the Société Française d’Alcoologie and a fellowship from the Fondation pour la Recherche Médicale. We thank Dr Mickaël Naassila for the quantification of ethanol level in blood samples.

References

  1. Basille, M., Gonzalez, B. J., Fournier, A., & Vaudry, H. (1994). Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: A quantitative autoradiographic study. Developmental Brain Research, 82, 81–89.PubMedCrossRefGoogle Scholar
  2. Bast, A., Wolf, G., Oberbaumer, I., & Walther, R. (2002). Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia, 45, 867–876.PubMedCrossRefGoogle Scholar
  3. Bénard, M., Gonzalez, B. J., Schouft, M. T., et al. (2004). Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Journal of Biological Chemistry, 279, 43487–43496.PubMedCrossRefGoogle Scholar
  4. Borges, S., & Lewis, P. D. (1983). Effects of ethanol on postnatal cell acquisition in the rat cerebellum. Brain Research, 271, 388–391.PubMedCrossRefGoogle Scholar
  5. Boulos, S., Meloni, B. P., Arthur, P. G., Bojarski, C., & Knuchey, N. W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. Journal of Neuroscience Research, 85, 3089–3097.PubMedCrossRefGoogle Scholar
  6. Bourgault, S., Vaudry, D., Botia, B., et al. (2008). Novel stable PACAP analogs with potent activity towards the PAC1 receptors. Peptides, (in press).Google Scholar
  7. Butterfield, L. H., Merino, A., Golub, S. H., & Shau, H. (1999). From cytoprotection to tumor suppression: The multifactorial role of peroxiredoxins. Antioxidants & Redox Signalling, 1, 385–402.CrossRefGoogle Scholar
  8. Cavallaro, S., Copani, A., D'Agata, V., et al. (1996). Pituitary adenylate cyclase-activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Molecular Pharmacology, 50, 60–66.PubMedGoogle Scholar
  9. Chae, H. Z., Chung, S. J., & Rhee, S. G. (1994a). Thioredoxin-dependent peroxide reductase from yeast. Journal of Biological Chemistry, 269, 27670–27678.PubMedGoogle Scholar
  10. Chae, H. Z., Kim, I. H., Kim, K., & Rhee, S. G. (1993). Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. Journal of Biological Chemistry, 268, 16815–16821.PubMedGoogle Scholar
  11. Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., & Rhee, S. G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proceedings of the National Academy of Sciences of the United States of America, 91, 7017–7021.PubMedCrossRefGoogle Scholar
  12. Dietz, K. J., Horling, F., Konig, J., & Baier, M. (2002). The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. Journal of Experimental Botany, 53, 1321–1329.PubMedCrossRefGoogle Scholar
  13. Falluel-Morel, A., Aubert, N., Vaudry, D., et al. (2004). Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. Journal of Neurochemistry, 91, 1231–1243.PubMedCrossRefGoogle Scholar
  14. Falluel-Morel, A., Vaudry, D., Aubert, N., et al. (2005). Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proceedings of the National Academy of Sciences of the United States of America, 102, 2637–2642.PubMedCrossRefGoogle Scholar
  15. Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A., & Vaudry, H. (1997). Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78, 419–430.PubMedCrossRefGoogle Scholar
  16. Guerri, C. (1998). Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 22, 304–312.PubMedCrossRefGoogle Scholar
  17. Hu, Z., Lelievre, V., Rodriguez, W. I., et al. (2001). Embryonic expression of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor gene in the frog Xenopus laevis neural tube. Journal of Comparative Neurology, 441, 266–275.PubMedCrossRefGoogle Scholar
  18. Ichimiya, S., Davis, J. G., O'Rourke, D. M., Katsumata, M., & Greene, M. I. (1997). Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury. DNA and Cell Biology, 16, 311–321.PubMedCrossRefGoogle Scholar
  19. Ikonomidou, C., Bittigau, P., Ishimaru, M. J., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science, 287, 1056–1060.PubMedCrossRefGoogle Scholar
  20. Jin, M. H., Lee, Y. H., Kim, J. M., et al. (2005). Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neuroscience Letters, 381, 252–257.PubMedCrossRefGoogle Scholar
  21. Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C., & Rhee, S. G. (1998). Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. Journal of Biological Chemistry, 273, 6297–6302.PubMedCrossRefGoogle Scholar
  22. Kang, S. W., Chang, T. S., Lee, T. H., Kim, E. S., Yu, D. Y., & Rhee, S. G. (2004). Cytosolic peroxiredoxin attenuates the activation of JNK and p38 and potentiates that of ERK in Hela cells stimulated with tumor necrosis factor-a. Journal of Biological Chemistry, 279, 2535–2543.PubMedCrossRefGoogle Scholar
  23. Kang, S. W., Rhee, S. G., Chang, T., Jeong, W., & Choi, M. H. (2005). 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Molecular Medicine, 11, 571–578.Google Scholar
  24. Kim, S. H., Fountoulakis, M., Cairns, N., & Lubec, G. (2001). Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. Journal of Neural Transmission Supplementum, 16, 223–235.Google Scholar
  25. Komuro, H., & Rakic, P. (1998). Distinct modes of neuronal migration in different domains of developing cerebellar cortex. Journal of Neuroscience, 18, 1478–1490.PubMedGoogle Scholar
  26. Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., & Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Research, 967, 152–160.PubMedCrossRefGoogle Scholar
  27. Kuida, K., Zheng, T. S., Na, S., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–372.PubMedCrossRefGoogle Scholar
  28. Leyens, G., Donnay, I., & Knoops, B. (2003). Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 136, 943–955.CrossRefGoogle Scholar
  29. Liesi, P. (1997). Ethanol-exposed central neurons fail to migrate and undergo apoptosis. Journal of Neuroscience Research, 48, 439–448.PubMedCrossRefGoogle Scholar
  30. Mei, Y. A., Vaudry, D., Basille, M., et al. (2004). PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP. European Journal of Neuroscience, 19, 1446–1458.PubMedCrossRefGoogle Scholar
  31. Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574.PubMedCrossRefGoogle Scholar
  32. Mooney, S. M., & Miller, M. W. (2001). Effects of prenatal exposure to ethanol on the expression of bcl2, bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Research, 911, 71–81.PubMedCrossRefGoogle Scholar
  33. Morio, H., Tatsuno, I., Hirai, A., Tamura, Y., & Saito, Y. (1996). Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Research, 741, 82–88.PubMedCrossRefGoogle Scholar
  34. Sarafian, T. A., Verity, M. A., Vinters, H. V., et al. (1999). Differential expression of peroxiredoxin subtypes in human brain cell types. Journal of Neuroscience Research, 56, 206–212.PubMedGoogle Scholar
  35. Schneider, D., Gerhardt, E., Bock, J., et al. (2004). Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death and Differentiation, 11, 760–770.PubMedCrossRefGoogle Scholar
  36. Sheward, W. J., Lutz, E. M., Copp, A. J., & Harmar, A. J. (1998). Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev, 109, 245–253.CrossRefGoogle Scholar
  37. Spitzer, N. C. (2006). Electrical activity in early neuronal development. Nature, 444, 707–712.PubMedCrossRefGoogle Scholar
  38. Sultana, R., Boyd-Kimball, D., Cai, J., et al. (2007). Proteomics analysis of the Alzheimer's disease hippocampal proteome. Journal of Alzheimer's Disease, 2, 153–164.Google Scholar
  39. Tatsuno, I., Somogyvari-Vigh, A., & Arimura, A. (1994). Developmental changes of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor in the rat brain. Peptides, 15, 55–60.PubMedCrossRefGoogle Scholar
  40. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.CrossRefGoogle Scholar
  41. Vaudry, D., Falluel-Morel, A., Basille, M., et al. (2003). Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. Journal of Neuroscience Research, 72, 303–316.PubMedCrossRefGoogle Scholar
  42. Vaudry, D., Gonzalez, B. J., Basille, M., Anouar, Y., Fournier, A., & Vaudry, H. (1998). Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience, 84, 801–812.PubMedCrossRefGoogle Scholar
  43. Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (1999). Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proceedings of the National Academy of Sciences of the United States of America, 96, 9415–9420.PubMedCrossRefGoogle Scholar
  44. Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (2000a). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to function. Pharmacological Reviews, 52, 269–324.PubMedGoogle Scholar
  45. Vaudry, D., Gonzalez, B. J., Basille, M., Pamantung, T. F., Fontaine, M., Fournier, A., et al. (2000b). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proceedings of the National Academy of Sciences of the United States of America, 97, 13390–13395.PubMedCrossRefGoogle Scholar
  46. Vaudry, D., Pamantung, T. F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., et al. (2002a). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.PubMedCrossRefGoogle Scholar
  47. Vaudry, D., Rousselle, C., Basille, M., Falluel-Morel, A., Pamantung, T. F., Fontaine, M., et al. (2002b). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 6398–6403.PubMedCrossRefGoogle Scholar
  48. Villalba, M., Bockaert, J., & Journot, L. (1997a). Concomitant induction of apoptosis and necrosis in cerebellar granule cells following serum and potassium withdrawal. Neuroreport, 8, 981–985.PubMedCrossRefGoogle Scholar
  49. Villalba, M., Bockaert, J., & Journot, L. (1997b). Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. Journal of Neuroscience, 17, 83–90.PubMedGoogle Scholar
  50. Yaka, R., He, D. Y., Phamluong, K., & Ron, D. (2003). Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. Journal of Biological Chemistry, 278, 9630–9638.PubMedCrossRefGoogle Scholar
  51. Yao, J., Taylor, M., Davey, F., et al. (2007). Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Molecular and Cellular Neurosciences, 35, 377–382.PubMedCrossRefGoogle Scholar
  52. Zhang, P., Liu, B., Kang, S. W., Seo, M. S., Rhee, S. G., & Obeid, L. M. (1997). Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of bcl2. Journal of Biological Chemistry, 272, 30615–30618.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Béatrice Botia
    • 1
    • 2
    • 3
  • Damien Seyer
    • 3
    • 4
  • Aurélia Ravni
    • 1
    • 2
    • 3
  • Magalie Bénard
    • 3
  • Anthony Falluel-Morel
    • 1
    • 2
    • 3
  • Pascal Cosette
    • 3
    • 4
  • Thierry Jouenne
    • 3
    • 4
  • Alain Fournier
    • 2
    • 5
  • Hubert Vaudry
    • 1
    • 2
    • 3
    Email author
  • Bruno J. Gonzalez
    • 1
    • 2
    • 3
  • David Vaudry
    • 1
    • 2
    • 3
    Email author
  1. 1.INSERM U413Laboratory of Cellular and Molecular NeuroendocrinologyMont-Saint-AignanFrance
  2. 2.International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan cedexFrance
  3. 3.European Institute for Peptide Research (IFRMP23)University of RouenMont-Saint-Aignan cedexFrance
  4. 4.CNRS UMR 6522, IBBR groupUniversity of RouenMont-Saint-AignanFrance
  5. 5.INRS-Institut Armand FrappierUniversity of QuébecPointe-ClaireCanada

Personalised recommendations