Journal of Molecular Neuroscience

, Volume 35, Issue 1, pp 3–12 | Cite as

A Matter of Identity: Transcriptional Control in Oligodendrocytes

  • Michael WegnerEmail author


Oligodendrocyte development progresses from specification to terminal differentiation through several phases. By now, a number of transcription factors have been identified that are essential for one or more of these phases. They stem from transcription factor families with known roles in many developmental processes. Basic helix–loop–helix, homeodomain, and high-mobility-group containing transcription factors such as the Olig, Nkx, and Sox proteins have been particularly well studied. A complex picture has emerged in which these transcription factors interact in transcriptional networks and thereby combine and influence their respective activities as repressors or activators in such a way that stage- and cell-type specific gene expression is achieved during oligodendrocyte development.


Sry Sox proteins Nkx proteins Olig proteins Proneural factors Myelin Homeodomain bHLH Notch 



This work was supported by grants from the Deutsche Forschungsgemeinschaft (We1326/8-1 and SFB473), the Schram-Stiftung (T287/14172/2004), and the Fonds der Chemischen Industrie.


  1. Arnett, H. A., Fancy, S. P., Alberta, J. A., Zhao, C., Plant, S. R., Kaing, S., et al. (2004). bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science, 306, 2111–2115.PubMedCrossRefGoogle Scholar
  2. Baas, D., Legrand, C., Samarut, J., & Flamant, F. (2002). Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 2907–2911.PubMedCrossRefGoogle Scholar
  3. Barres, B. A., Lazar, M. A., & Raff, M. C. (1994). A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 120, 1097–1108.PubMedGoogle Scholar
  4. Battiste, J., Helms, A. W., Kim, E. J., Savage, T. K., Lagace, D. C., Mandyam, C. D., et al. (2006). Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development, 134, 285–293.PubMedCrossRefGoogle Scholar
  5. Billon, N., Tokumoto, Y., Forrest, D., & Raff, M. (2001). Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Developmental Biology, 235, 110–120.PubMedCrossRefGoogle Scholar
  6. Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., & Goossens, M. (2001). Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Human Molecular Genetics, 10, 2783–2795.PubMedCrossRefGoogle Scholar
  7. Cai, J., Chen, Y., Cai, W. H., Hurlock, E. C., Wu, H., Kernie, S. G., et al. (2007). A crucial role for Olig2 in white matter astrocyte development. Development, 134, 1887–1899.PubMedCrossRefGoogle Scholar
  8. Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., et al. (2005). Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron, 45, 41–53.PubMedCrossRefGoogle Scholar
  9. Deneen, B., Ho, R., Lukaszewicz, A., Hochstim, C. J., Gronostajski, R. M., & Anderson, D. J. (2006). The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron, 52, 953–968.PubMedCrossRefGoogle Scholar
  10. Fogarty, M., Richardson, W. D., & Kessaris, N. (2005). A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development, 132, 1951–1959.PubMedCrossRefGoogle Scholar
  11. Fu, H., Qi, Y., Tan, M., Cai, J., Takebayashi, H., Nakafuku, M., et al. (2002). Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development, 129, 681–693.PubMedGoogle Scholar
  12. Genoud, S., Lappe-Siefke, C., Goebbels, S., Radtke, F., Aguet, M., Scherer, S. S., et al. (2002). Notch1 control of oligodendrocyte differentiation in the spinal cord. Journal of Cell Biology, 158, 709–718.PubMedCrossRefGoogle Scholar
  13. Gokhan, S., Marin-Husstege, M., Yung, S. Y., Fontanez, D., Casaccia-Bonnefil, P., & Mehler, M. F. (2005). Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. Journal of Neuroscience, 25, 8311–8321.PubMedCrossRefGoogle Scholar
  14. He, Y., Dupree, J., Wang, J., Sandoval, J., Li, J., Liu, H., et al. (2007). The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron, 55, 217–230.PubMedCrossRefGoogle Scholar
  15. Kamachi, Y., Uchikawa, M., & Kondoh, H. (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends in Genetics, 16, 182–187.PubMedCrossRefGoogle Scholar
  16. Kellerer, S., Schreiner, S., Stolt, C. C., Bösl, M. R., & Wegner, M. (2006). Functional equivalency of transcription factors Sox8 and Sox10 is tissue-specific. Development, 133, 2875–2886.PubMedCrossRefGoogle Scholar
  17. Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., & Richardson, W. D. (2006). Competition waves of oligodendrocytes in the forebrain and postnatal elimination of an early embryonic lineage. Nature Neuroscience, 9, 173–179.PubMedCrossRefGoogle Scholar
  18. Kessaris, N., Pringle, N., & Richardson, W. D. (2001). Ventral neurogenesis and the neuron-glial switch. Neuron, 31, 677–680.PubMedCrossRefGoogle Scholar
  19. Kondo, T., & Raff, M. C. (2000). The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO Journal, 19, 1998–2007.PubMedCrossRefGoogle Scholar
  20. Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., & Wegner, M. (1998). Sox10, a novel transcriptional modulator in glial cells. Journal of Neuroscience, 18, 237–250.PubMedGoogle Scholar
  21. LeBlanc, S. E., Ward, R. M., & Svaren, J. (2007). Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Molecular and Cellular Biology, 27, 3521–3529.PubMedCrossRefGoogle Scholar
  22. Liu, R., Cai, J., Hu, X., Tan, M., Qi, Y., German, M., et al. (2003). Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development, 130, 6221–6231.PubMedCrossRefGoogle Scholar
  23. Liu, Z., Hu, X., Cai, J., Liu, B., Peng, X., Wegner, M., et al. (2007). Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology, 302, 683–693.PubMedCrossRefGoogle Scholar
  24. Liu, A., Li, J., Marin-Husstege, M., Kageyama, R., Fan, Y., Gelinas, C., et al. (2006). A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO Journal, 25, 4833–4842.PubMedCrossRefGoogle Scholar
  25. Lu, Q. R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C. D., et al. (2002). Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell, 109, 75–86.PubMedCrossRefGoogle Scholar
  26. Lu, Q. R., Yuk, D., Alberta, J. A., Zhu, Z., Pawlitzky, I., Chan, J., et al. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 25, 317–329.PubMedCrossRefGoogle Scholar
  27. Marin-Husstege, M., He, Y., Li, J., Kondo, T., Sablitzky, F., & Casaccia-Bonnefil, P. (2006). Multiple roles of Id4 in developmental myelination: predicted outcomes and unexpected findings. Glia, 54, 285–296.PubMedCrossRefGoogle Scholar
  28. Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., et al. (2006). Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Developmental Biology, 293, 358–369.PubMedCrossRefGoogle Scholar
  29. Mizuguchi, R., Sugimori, M., Takebayashi, H., Kosako, H., Nagao, M., Yoshida, S., et al. (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of panneuronal and subtype-specific properties of motoneurons. Neuron, 31, 757–771.PubMedCrossRefGoogle Scholar
  30. Nieto, M., Schuurmans, C., Britz, O., & Guillemot, F. (2001). Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron, 29, 401–413.PubMedCrossRefGoogle Scholar
  31. Novitch, B. G., Chen, A. I., & Jessell, T. M. (2001). Coordinate regulation of motoneuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron, 31, 773–789.PubMedCrossRefGoogle Scholar
  32. Park, H. C., & Appel, B. (2003). Delta-notch signaling regulates oligodendrocyte specification. Development, 130, 3747–3755.PubMedCrossRefGoogle Scholar
  33. Parras, C. M., Hunt, C., Sugimori, M., Nakafuku, M., Rowitch, D. H., & Guillemot, F. (2007). The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. Journal of Neuroscience, 27, 4233–4242.PubMedCrossRefGoogle Scholar
  34. Petryniak, M. A., Potter, G. B., Rowitch, D. H., & Rubenstein, J. L. R. (2007). Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron, 55, 417–433.PubMedCrossRefGoogle Scholar
  35. Qi, Y., Cai, J., Wu, Y., Wu, R., Lee, J., Fu, H., et al. (2001). Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development, 128, 2723–2733.PubMedGoogle Scholar
  36. Richardson, W. D., Kessaris, N., & Pringle, N. (2006). Oligodendrocyte wars. Nature Reviews Neuroscience, 7, 11–18.PubMedCrossRefGoogle Scholar
  37. Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nature Reviews Neuroscience, 5, 409–419.PubMedCrossRefGoogle Scholar
  38. Samanta, J., & Kessler, J. A. (2004). Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development, 131, 4131–4142.PubMedCrossRefGoogle Scholar
  39. Schlierf, B., Werner, T., Glaser, G., & Wegner, M. (2006). Expression of Connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. Journal of Molecular Biology, 361, 11–21.PubMedCrossRefGoogle Scholar
  40. Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bösl, M. R., & Wegner, M. (2001). Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Molecular and Cellular Biology, 21, 6951–6959.PubMedCrossRefGoogle Scholar
  41. Sohn, J., Natale, J., Chew, L. J., Belachew, S., Cheng, Y., Aguirre, A., et al. (2006). Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. Journal of Neuroscience, 26, 9722–9735.PubMedCrossRefGoogle Scholar
  42. Soula, C., Danesin, C., Kan, P., Grob, M., Poncet, C., & Cochard, P. (2001). Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development, 128, 1369–1379.PubMedGoogle Scholar
  43. Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., & Gow, A. (2004). CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.PubMedCrossRefGoogle Scholar
  44. Stolt, C. C., Lommes, P., Friedrich, R. P., & Wegner, M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development, 131, 2349–2358.PubMedCrossRefGoogle Scholar
  45. Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M.-C., Schedl, A., & Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes and Development, 17, 1677–1689.PubMedCrossRefGoogle Scholar
  46. Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., et al. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes and Development, 16, 165–170.PubMedCrossRefGoogle Scholar
  47. Stolt, C. C., Schlierf, A., Lommes, P., Hillgärtner, S., Werner, T., Kosian, T., et al. (2006). SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Developmental Cell, 11, 697–710.PubMedCrossRefGoogle Scholar
  48. Stolt, C. C., Schmitt, S., Lommes, P., Sock, E., & Wegner, M. (2005). Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Developmental Biology, 281, 323–331.CrossRefGoogle Scholar
  49. Sugimori, M., Nagao, M., Bertrand, N., Parras, C. M., Guillemot, F., & Nakafuku, M. (2007). Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development, 134, 1617–1629.PubMedCrossRefGoogle Scholar
  50. Sun, T., Dong, H., Wu, L., Kane, M., Rowitch, D. H., & Stiles, C. D. (2003). Cross-repressive interaction of Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. Journal of Neuroscience, 23, 9547–9556.PubMedGoogle Scholar
  51. Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D., & Smith, H. K. (1998). Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Molecular and Cellular Neurosciences, 12, 228–239.PubMedCrossRefGoogle Scholar
  52. Taylor, M. K., Yeager, K., & Morrison, S. J. (2007). Physiological notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development, 134, 2435–2447.PubMedCrossRefGoogle Scholar
  53. Vallstedt, A., Klos, J. M., & Ericson, J. (2005). Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron, 45, 55–67.PubMedCrossRefGoogle Scholar
  54. Wang, S. Z., Dulin, J., Wu, H., Hurlock, E., Lee, S. E., Jansson, K., et al. (2006). An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development, 133, 3389–3398.PubMedCrossRefGoogle Scholar
  55. Wang, S., Sdrulla, A., Johnson, J. E., Yokota, Y., & Barres, B. A. (2001). A role for the helix–loop–helix protein Id2 in the control of oligodendrocyte development. Neuron, 29, 603–614.PubMedCrossRefGoogle Scholar
  56. Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research, 27, 1409–1420.PubMedCrossRefGoogle Scholar
  57. Wegner, M. (2000a). Transcriptional control in myelinating glia: flavors and spices. Glia, 31, 1–14.PubMedCrossRefGoogle Scholar
  58. Wegner, M. (2000b). Transcriptional control in myelinating glia: the basic recipe. Glia, 29, 118–123.PubMedCrossRefGoogle Scholar
  59. Wegner, M. (2005). Secrets to a healthy Sox life: Lessons for melanocytes. Pigment Cell Research, 18, 74–85.PubMedCrossRefGoogle Scholar
  60. Wegner, M., & Stolt, C. C. (2005). From stem cells to neurons and glia: a soxist’s view of neural development. Trends in Neurosciences, 28, 583–588.PubMedCrossRefGoogle Scholar
  61. Xin, M., Yue, T., Ma, Z., Wu, F. F., Gow, A., & Lu, Q. R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. Journal of Neuroscience, 25, 1354–1365.PubMedCrossRefGoogle Scholar
  62. Yamaguchi, H., Zhou, C., Lin, S. C., Durand, B., Tsai, S. Y., & Tsai, M. J. (2004). The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Developmental Biology, 266, 238–251.PubMedCrossRefGoogle Scholar
  63. Zhou, Q., & Anderson, D. J. (2002). The bHLH transcription factors olig2 and olig1 couple neuronal and glial subtype specification. Cell, 109, 61–73.PubMedCrossRefGoogle Scholar
  64. Zhou, Q., Choi, G., & Anderson, D. J. (2001). The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron, 31, 791–807.PubMedCrossRefGoogle Scholar
  65. Zhou, Q., Wang, S., & Anderson, D. J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron, 25, 331–343.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Institut für Biochemie, Emil-Fischer-ZentrumUniversität ErlangenErlangenGermany

Personalised recommendations