Journal of Molecular Neuroscience

, Volume 33, Issue 1, pp 12–17

A Model for Fatty Acid Transport into the Brain

Article

Abstract

A key function of fatty acid (FA) transport into the brain is to supply polyunsaturated fatty acids (PUFA) that are not synthesized in brain cells but are essential signaling molecules and components of the phospholipid membrane. In addition, common dietary FAs such as palmitic acid are also rapidly taken up by the brain and esterified to phospholipids or oxidized to provide cellular energy. Most evidence shows that FA crossing the blood brain barrier (BBB) is derived mainly from FA/albumin complexes and, to a lesser extent, from circulating lipoproteins. Our model proposes that FA diffuse across the lipid bilayer of the BBB without specific transporters to reach brain cells. They cross the luminal and transluminal leaflets of the endothelial cells and the plasma membrane of neural cells by reversible flip-flop. Acyl-CoA synthetases trap FA by forming acyl-CoA, which cannot diffuse out of the cell. Selection of FA is controlled largely by enzymes in the pathways of intracellular metabolism, beginning with the acyl-CoA synthetase.

Keywords

Fatty acid Brain Flip-flop Blood brain barrier FATP Acyl-CoA synthetase Endothelial cells 

References

  1. Black, P. N., & DiRusso, C. C. (2003). Transmembrane movement of exogenous long-chain fatty acids: Proteins, enzymes, and vectorial esterification. Microbiology and Molecular Biology Reviews, 67, 454–472.PubMedCrossRefGoogle Scholar
  2. Boylan, J. G., & Hamilton, J. A. (1992). Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin. Biochemistry, 31, 557–567.PubMedCrossRefGoogle Scholar
  3. Drewes, L. R. (2001). Molecular architecture of the brain microvasculature: Perspective on blood–brain transport. Journal of Molecular Neuroscience, 16, 93–98, discussion 151–157.PubMedCrossRefGoogle Scholar
  4. Edmond, J. (2001). Essential polyunsaturated fatty acids and the barrier to the brain: The components of a model for transport. Journal of Molecular Neuroscience, 16, 181–193, discussion 215-121.PubMedCrossRefGoogle Scholar
  5. Fischer, H., Gottschlich, R., & Seelig, A. (1998). Blood–brain barrier permeation: Molecular parameters governing passive diffusion. Journal of Membrane Biology, 165, 201–211.PubMedCrossRefGoogle Scholar
  6. Gnaedinger, J. M., Miller, J. C., Latker, C. H., & Rapoport, S. I. (1988). Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: Subcellular localization. Neurochemical Research, 13, 21–29.PubMedCrossRefGoogle Scholar
  7. Guo, W., Huang, N., Cai, J., Xie, W., & Hamilton, J. A. (2006). Fatty acid transport and metabolism in HepG2 cells. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290, G528–G534.PubMedCrossRefGoogle Scholar
  8. Hajri, T., & Abumrad, N. A. (2002). Fatty acid transport across membranes: Relevance to nutrition and metabolic pathology. Annual Review of Nutrition, 22, 383–415.PubMedCrossRefGoogle Scholar
  9. Hamilton, J. A. (2004). Fatty acid interactions with proteins: What X-ray crystal structures tell us. Progress in Lipid Research, 43, 177–199.Google Scholar
  10. Hamilton, J. A., Johnson, R. A., Corkey, B., & Kamp, F. (2001). Fatty acid transport: The diffusion mechanism in model and biological membranes. Journal of molecular neuroscience, 16, 99–108, discussion 151–107.PubMedCrossRefGoogle Scholar
  11. Kamp, F., Guo, W., Souto, R., Pilch, P. F., Corkey, B. E., & Hamilton, J. A. (2003). Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. Journal of Biological Chemistry, 278, 7988–7995.PubMedCrossRefGoogle Scholar
  12. Kamp, F., & Hamilton, J. A. (1992). pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 89, 11367–11370.PubMedCrossRefGoogle Scholar
  13. Kamp, F., Hamilton, J. A., Kamp, F., Westerhoff, H. V., & Hamilton, J. A. (1993). Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry, 32, 11074–11086.PubMedCrossRefGoogle Scholar
  14. Kamp, F., Zakim, D., Zhang, F., Noy, N., & Hamilton, J. A. (1995). Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry, 34, 11928–11937.PubMedCrossRefGoogle Scholar
  15. Lam, T. K., Schwartz, G. J., & Rossetti, L. (2005). Hypothalamic sensing of fatty acids. Nature Neuroscience, 8, 579–584.PubMedCrossRefGoogle Scholar
  16. Lewis, S. E., Listenberger, L. L., Ory, D. S., & Schaffer, J. E. (2001). Membrane topology of the murine fatty acid transport protein 1. Journal of Biological Chemistry, 276, 37042–37050.PubMedCrossRefGoogle Scholar
  17. Marszalek, J. R., & Lodish, H. F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annual Review of Cell and Developmental Biology, 21, 633–657.PubMedCrossRefGoogle Scholar
  18. Mashek, D. G., Bornfeldt, K. E., Coleman, R. A., Berger, J., Bernlohr, D. A., Black, P., et al. (2004). Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 45, 1958–1961.PubMedCrossRefGoogle Scholar
  19. Mashek, D. G., & Coleman, R. A. (2006). Cellular fatty acid uptake: The contribution of metabolism. Current Opinion in Lipidology, 17, 274–278.PubMedCrossRefGoogle Scholar
  20. Massey, J. B., Bick, D. H., & Pownall, H. J. (1997). Spontaneous transfer of monoacyl amphiphiles between lipid and protein surfaces. Biophysical Journal, 72, 1732–1743.PubMedCrossRefGoogle Scholar
  21. Meshulam, T., Simard, J. R., Wharton, J., Hamilton, J. A., & Pilch, P. F. (2006). Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry, 45, 2882–2893.PubMedCrossRefGoogle Scholar
  22. Miller, J. C., Gnaedinger, J. M., & Rapoport, S. I. (1987). Utilization of plasma fatty acid in rat brain: Distribution of [14C]palmitate between oxidative and synthetic pathways. Journal of Neurochemistry, 49, 1507–1514.PubMedCrossRefGoogle Scholar
  23. Pardridge, W. M., & Mietus, L. J. (1980). Palmitate and cholesterol transport through the blood–brain barrier. Journal of Neurochemistry, 34, 463–466.PubMedCrossRefGoogle Scholar
  24. Pohl, J., Ring, A., Hermann, T., & Stremmel, W. (2004). Role of FATP in parenchymal cell fatty acid uptake. Biochimica and Biophysica Acta. Molecular and Cell Biology of Lipids, 1686, 1–6.CrossRefGoogle Scholar
  25. Purdon, D., Arai, T., & Rapoport, S. (1997). No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. Journal of Lipid Research, 38, 526–530.PubMedGoogle Scholar
  26. Purdon, A. D., Rosenberger, T. A., Shetty, H. U., & Rapoport, S. I. (2002). Energy consumption by phospholipid metabolism in mammalian brain. Neurochemical Research, 27, 1641–1647.PubMedCrossRefGoogle Scholar
  27. Rapoport, S. I. (2001). In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. Journal of Molecular Neuroscience, 16, 243–261, discussion 279–284.PubMedCrossRefGoogle Scholar
  28. Rapoport, S. I., Purdon, D., Shetty, H. U., Grange, E., Smith, Q., Jones, C., et al. (1997). In vivo imaging of fatty acid incorporation into brain to examine signal transduction and neuroplasticity involving phospholipids. Annals of the New York Academy of Sciences, 820, 56–73, discussion 73–74.PubMedCrossRefGoogle Scholar
  29. Schmelter, T., Trigatti, B. L., Gerber, G. E., & Mangroo, D. (2004). Biochemical demonstration of the involvement of fatty acyl-CoA synthetase in fatty acid translocation across the plasma membrane. Journal of Biological Chemistry, 279, 24163–24170.PubMedCrossRefGoogle Scholar
  30. Smith, Q. R., & Nagura, H. (2001). Fatty acid uptake and incorporation in brain: Studies with the perfusion model. Journal of Molecular Neuroscience, 16, 167–172, discussion 215–121.PubMedCrossRefGoogle Scholar
  31. Spector, A. A. (2001). Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain. Journal of Molecular Neuroscience, 16, 159–165 discussion 215–121.PubMedCrossRefGoogle Scholar
  32. Wu, M. L., Chan, C. C., & Su, M. J. (2000). Possible mechanism(s) of arachidonic acid-induced intracellular acidosis in rat cardiac myocytes. Circulation Research, 86, E55–E62.PubMedGoogle Scholar
  33. Zhang, F., Kamp, F., & Hamilton, J. A. (1996). Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry, 35, 16055–16060.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Physiology and BiophysicsBoston University School of MedicineBostonUSA

Personalised recommendations