Journal of Molecular Neuroscience

, Volume 33, Issue 1, pp 114–119

F2-Isoprostanes as Biomarkers of Late-onset Alzheimer’s Disease

  • Thomas J. Montine
  • Joseph Quinn
  • Jeffrey Kaye
  • Jason D. Morrow
Article

Abstract

Alzheimer’s disease (AD) is a syndrome caused by a few uncommon mutations that lead to early-onset disease, occurs in adults with Down’s syndrome, but is by far most commonly seen as a late-onset disease with multiple risk factors but no causative factors yet identified. Emerging data suggests a chronic disease model for AD with latency, prodrome, and dementia stages together lasting decades. Free radical damage to lipids in brain is one pathogenic process of AD that may be quantified with F2-isoprostanes (IsoPs). Whereas brain and cerebrospinal fluid (CSF) F2-IsoPs are reproducibly elevated in AD patients at both dementia and prodromal stages of disease, plasma and urine F2-IsoPs are not reproducibly increased in AD patients. CSF F2-IsoPs may be used to assist in diagnosis and aid in objective assessment of disease progression and response to therapeutics in patients with AD.

Keywords

F2-Isoprostanes Alzheimer’s disease Latency Prodrome Dementia 

References

  1. Arriagada, P. V., Marzloff, K., & Hyma, B. T. (1992). Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology, 42, 1681–1688.PubMedGoogle Scholar
  2. Berg, L., McKeel, D. W., Miller, J. P., Baty, J., & Morris, J. C. (1993) Neuropathological indexes of Alzheimer’s disease in demented and nondemented persons aged 80 years and older. Archives of Neurology, 50, 349–358.PubMedGoogle Scholar
  3. Bohnstedt, K. C., Karlberg, B., Wahlund, L., Jonhagen, M. E., Basun, H., & Schmidt, S. (2003). Determination of isoprostanes in urine samples from Alzheimer patients using porous graphitic carbon liquid chromatography-tandem mass spectrometry. Journal of Chromatography B Analytical Technology Biomedical Life Science, 796, 11–19.CrossRefGoogle Scholar
  4. Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health, 88, 1337–1342.PubMedGoogle Scholar
  5. Crystal, H. A., Dickson, D. W., Sliwinski, M. J., Lipton, R. B., Grober, E., Marks-Nelson, H., et al. (1993) Pathological markers associated with normal aging and dementia in the elderly. Annals of Neurology, 34, 566–573.PubMedCrossRefGoogle Scholar
  6. Davis, D. G., Schmitt, F. A., Wekstein, D. R., & Markesbery, W. (1999) Alzheimer neuropathological alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58, 376–388.PubMedGoogle Scholar
  7. de Leon, M. J., Desanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., et al. (2006). Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiology of Aging, 27, 394–401.PubMedCrossRefGoogle Scholar
  8. Ernst, R. L., & Hay, J. W. (1994). The US economic and social costs of Alzheimer’s disease revisited. American Journal of Public Health, 84, 1261–1264.PubMedCrossRefGoogle Scholar
  9. Evans, D. A. (1990). Estimated prevalence of Alzheimer’s disease in the United States. Milbank Quarterly, 68, 267–289.PubMedCrossRefGoogle Scholar
  10. Feillet-Coudray, C., Tourtauchaux, R., Niculescu, M., Rock, E., Tauveron, I., Alexandre-Gouabau, M. C., et al. (1999). Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’s disease. Free Radical Biology & Medicine, 27, 463–469.CrossRefGoogle Scholar
  11. Galasko, D., Katzman, R., Salmon, D., & Hansen, L. (1996). Clinical and neuropathological findings in Lewy body dementias. Brain and Cognition, 31, 166–175.PubMedCrossRefGoogle Scholar
  12. Green, M. S., Kaye, J. A., & Ball, M. J. (2000) The Oregon brain aging study: Neuropathology accompanying health aging in the oldest old. Neurology, 54, 105–113.PubMedCrossRefGoogle Scholar
  13. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.PubMedCrossRefGoogle Scholar
  14. Haroutunian, V., Purohit, D. P., Perl, D. P., Marin, D., Khan, K., Lantz, M., et al. (1999). Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Archives of Neurology, 56, 713–718.PubMedCrossRefGoogle Scholar
  15. Hulette, C. M., Welsh-Bohmer, K. A., Murray, M. G., Saunders, A. M., Mash, D. C., & McIntyre, L. M. (1998) Neuropathological and neuropsychological changes in “normal” aging: Evidence for preclinical Alzheimer disease in cognitively normal individuals. Journal of Neuropathology and Experimental Neurology, 57, 1168–1174.PubMedGoogle Scholar
  16. Katzman, R. (1976). Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Archives of Neurology, 33, 217–218.PubMedGoogle Scholar
  17. Martin, B. K., Meinert, C. L., & Breitner, J. C. (2002). Double placebo design in a prevention trial for Alzheimer’s disease. Controlled Clinical Trials, 23, 93–99.PubMedCrossRefGoogle Scholar
  18. McCormick, W. C., Hardy, J., Kukull, W. A., Bowen, J. D., Teri, L., Zitzer, S., et al. (2001). Healthcare utilization and costs in managed care patients with Alzheimer’s disease during the last few years of life. Journal of the American Geriatrics Society, 49, 1156–1160.PubMedCrossRefGoogle Scholar
  19. Montine, T. J., Beal, M. F., Cudkowicz, M. E., Brown, R. H., O’Donnell, H., Margolin, R. A., et al. (1999a). Increased cerebrospinal fluid F2-isoprostane concentration in probable Alzheimer’s disease. Neurology, 52, 562–565.PubMedGoogle Scholar
  20. Montine, T. J., Beal, M. F., Robertson, D., Cudkowicz, M. E., Biaggioni, I., O’Donnell, H., et al. (1999b). Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology, 52, 1104–1105.PubMedGoogle Scholar
  21. Montine, T. J., Kaye, J. A., Montine, K. S., McFarland, L., Morrow, J. D., & Quinn, J. F. (2001). CSF Ab42, tau, and F2-isoprostane concentrations in patients with Alzheimer’s disease, other dementias, and age-matched controls. Archives of Pathology and Laboratory Medicine, 125, 510–512.PubMedGoogle Scholar
  22. Montine, T. J., Markesbery, W. R., Morrow, J. D., & Roberts, L. J. (1998). Cerebrospinal fluid F2-isoprostanes are increased in Alzheimer’s disease. Annals of Neurology, 44, 410–413.PubMedCrossRefGoogle Scholar
  23. Montine, T. J., Markesbery, W. R., Zackert, W., Sanchez, S. C., Roberts, L. J., & Morrow, J. D. (1999c). The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles, or with APOE genotype in Alzheimer’s disease patients. American Journal of Pathology, 155, 863–868.PubMedGoogle Scholar
  24. Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., II, et al. (2002a). Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology & Medicine, 33, 620–626.CrossRefGoogle Scholar
  25. Montine, T. J., Quinn, J. F., Milatovic, D., Silbert, L. C., Dang, T., Sanchez, S., et al. (2002b). Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Annals of Neurology, 52, 175–179.PubMedCrossRefGoogle Scholar
  26. Montine, T. J., Shinobu, L., Montine, K. S., Roberts, L. J., II, Beal, M. F., & Morrow, J. D. (2000). No difference in plasma or urine F2-isoprostanes among patients with Huntington’s disease or Alzheimer’s disease, and controls. Annals of Neurology, 48, 950.PubMedCrossRefGoogle Scholar
  27. Montine, T. J., Sidell, K. S., Crews, B. C., Markesbery, W. R., Marnett, L. J., Roberts, L. J., et al. (1999d). Elevated cerebrospinal fluid prostaglandin E2 levels in patients with probable Alzheimer’s disease. Neurology, 53, 1495–1498.PubMedGoogle Scholar
  28. Morris, J. C., & Price, A. L. (2001). Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 101–118.PubMedCrossRefGoogle Scholar
  29. Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., & Roberts, L. J. (1990). A series of prostaglandin-like compounds produced in vivo in humans by a non-cyclooxygenase, free radical catalyzed mechanism. Proceedings of the National Academy of Sciences of the United States of America, 87, 9383–9387.Google Scholar
  30. Morrow, J. D., & Roberts, L. J., II (1994). Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical catalyzed mechanism. Methods in Enzymology, 233, 163–174.PubMedCrossRefGoogle Scholar
  31. Petersen, R., Doody, R., Kurz, A., Mohs, R., Morris, J., Rabins, P., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1982.Google Scholar
  32. Petrovitch, H., White, L. R., Izmirilian, G., Ross, G. W., Havlik, R. J., Markesbery, W., et al. (2000) Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: The HAAS. Honolulu–Asia aging Study. Neurobiology of Aging, 21, 57–62.PubMedGoogle Scholar
  33. Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30, 277–290.PubMedCrossRefGoogle Scholar
  34. Pratico, D., Barry, O. P., Lawson, J. A., Adiyaman, M., Hwang, S. W., Khanapure, S. P., et al. (1998a). IPF2-alpha-I—an index of lipid peroxidation in humans. Proceedings of the National Academy of Sciences, 95, 3449–3454.Google Scholar
  35. Pratico, D., Clack, C. M., Lee, V. M. Y., Trojanowski, J. Q., Rokach, J., & FitzGerald, G. (2000) Increased 8,12-iso-iPF2a-IV in Alzheimer’s disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of Neurology, 48, 809–812.PubMedCrossRefGoogle Scholar
  36. Pratico, D., Clark, C. M., Liun, F., Rokach, J., Lee, V. Y., & Trojanowski, J. Q. (2002). Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Archives of Neurology, 59, 972–976.PubMedCrossRefGoogle Scholar
  37. Pratico, D., Lee, V. M., Trojanowski, J. Q., Rokach, J., & Fitzgerald, G. A. (1998b). Increased F2-isoprostanes in Alzheimer’s disease: Evidence for enhanced lipid peroxidation in vivo. FASEB Journal, 12, 1777–1784.PubMedGoogle Scholar
  38. Price, J. L., Davis, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.PubMedCrossRefGoogle Scholar
  39. Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.PubMedCrossRefGoogle Scholar
  40. Quinn, J. F., Montine, K. S., Moore, M., Morrow, J. D., Kaye, J. A., & Montine, T. J. (2004) Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 93–97.PubMedGoogle Scholar
  41. Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. (2001) Brain regional quantification of F-ring and D/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297.PubMedGoogle Scholar
  42. Riley, K. P., Snowdon, D. A., & Markesbery, W. R. (2002). Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: Findings from the nun study. Annals of Neurology, 51, 567–577.PubMedCrossRefGoogle Scholar
  43. Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited. Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.PubMedGoogle Scholar
  44. Strittmatter, W. J., & Roses A. D. (1995). Apolipoprotein E and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 92, 4725–4727.Google Scholar
  45. Tsuang, D. W., & Bird, T. D. (2002). Genetics of dementia. Medical Clinics of North America, 86, 591–614.PubMedCrossRefGoogle Scholar
  46. Tuppo, E. E., Forman, L. J., Spur, B. W., Chan-Ting, R. E., Chopra, A., & Cavalieri, T. A. (2001). Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Research Bulletin, 54, 565–568.PubMedCrossRefGoogle Scholar
  47. Waddington, E., Croft, K., Clarnette, R., Mori, T., & Martins, R. (1999). Plasma F2-isoprostane levels are increased in Alzheimer’s disease: Evidence of increased oxidative stress in vivo. Alzheimer’s Reports, 2, 277–282.Google Scholar
  48. Welch, H. G., Walsh, J. S., & Larson, E. B. (1992). The cost of institutional care in Alzheimer’s disease: Nursing home and hospital use in a prospective cohort. Journal of the American Geriatrics Society, 40, 221–224.PubMedGoogle Scholar
  49. White, L., Petrovitch, H., Hardman, J., Nelson, J., Davis, D., Ross, G., et al. (2002). Cerebrovascular pathology and dementia in autopsied Honolulu–Asia Aging Study participants. Annals of the New York Academy of Sciences, 977, 9–23.PubMedCrossRefGoogle Scholar
  50. Xuereb, J. H., Brayne, C., Dufouil, C., Gertz, H., Wischik, C., Harrington, C., et al. (2000). Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Annals of the New York Academy of Sciences, 903, 490–496.PubMedCrossRefGoogle Scholar
  51. Zandi, P. P., Anthony, J. C., Khachaturian, A. S., Stone, S. V., Gustafson, D., Tschanz, J. T., et al. (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Archives of Neurology, 61, 82–88.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Thomas J. Montine
    • 1
    • 2
  • Joseph Quinn
    • 2
  • Jeffrey Kaye
    • 2
  • Jason D. Morrow
    • 3
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA
  2. 2.Department of NeurologyOregon Health and Sciences UniversityPortlandUSA
  3. 3.Department of MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations