Journal of Molecular Neuroscience

, Volume 33, Issue 3, pp 252–261 | Cite as

Stage-specific Modulation of Neprilysin and Aminopeptidase N in the Limbic System During Kindling Progression

  • Patricia de Gortari
  • Miguel Angel Vargas
  • Adrián Martínez
  • Arlene I. García-Vázquez
  • Rosa María Uribe
  • Lucía Chávez-Gutiérrez
  • Víctor Magdaleno
  • Guy Boileau
  • Jean-Louis Charlí
  • Patricia Joseph-BravoEmail author


Aminopeptidase N (APN) and neprilysin (NEP) inactivate neuropeptides released into the brain extracellular fluid. We previously showed that the expression of pyroglutamyl peptidase II (PPII), the TRH degrading ecto-enzyme, is regulated in rat brain by amygdaline kindling, a paradigm that activates neuronal pathways in the limbic system increasing the expression of several neuropeptides including TRH and opioids. To understand the specificity of this phenomenon, we studied APN and NEP expression in brains of partially or fully kindled rats (stage II and V), sacrificed 6 h after last stimulus, compared with sham-operated animals. In situ hybridization analysis of NEP mRNA levels showed decreased expression at stage II in CA1, CA2, olfactory tubercle and medial mammillary nucleus, and increased at stage V in CA1 and CA2 cells. These changes were specific for the ipsilateral side. APN mRNA levels, semi-quantified by RT-PCR, were decreased at stage II and increased at stage V, in frontal cortex-olfactory tubercle, and hippocampus. NEP and APN enzymatic activities, determined by fluorometric assays, followed similar variations to their respective mRNA levels. The coordinated changes (in some regions) of NEP and APN expression were opposite to those previously observed for PPII mRNA and activity levels in limbic regions. These results demonstrate that expression of ectopeptidases can be regulated when peptide neurons are activated and, that regulation is enzyme-, region-, and stage-specific.


Enkephalinase APN Hippocampus Amygdala Cortex Medial mammillary nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antczak, C., De Meester, I., & Bauvois, B. (2001). Ectopeptidases in pathophysiology. BioEssays, 23, 251–260.PubMedCrossRefGoogle Scholar
  2. Balog, T., Marotti, T., Abramic, M., Beusan-Svoboda, I., Sobocanec, S., & Hrsak, I. (2001). Neutrophil neutral endopeptidase variation and its regulation by opioid peptides. International Immunopharmacology, 1, 569–579.PubMedCrossRefGoogle Scholar
  3. Barnes, K., Doherty, A., & Turner, A. J. (1995). Endopeptidase 24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus. Journal of Neurochemistry, 64, 1826–1832.PubMedCrossRefGoogle Scholar
  4. Bregola, G., Zucchini, S., Rodi, D., Binaschi, A., D’Addario, C., Landuzzi, D., et al. (2002). Involvement of the neuropeptide Nociceptin/Orphanin FQ in kainate seizures. Journal of Neuroscience, 22, 10030–10038.PubMedGoogle Scholar
  5. Burazin, T. C. D., & Gundlach, A. L. (1996). Rapid and transient increases in cellular immediate early gene and neuropeptide mRNAs in cortical and limbic areas after amygdaloid kindling seizures in the rat. Epilepsy Research, 26, 281–293.PubMedCrossRefGoogle Scholar
  6. Charli, J. L., Méndez, M., Cisneros, M., Vargas, M. A., Assai, M., Joseph-Bravo, P., et al. (1989). Inhibition of pyroglutamate aminopeptidase II specifically increases recovery of TRH released from brain slices. Neuropeptides, 14, 191–196.PubMedCrossRefGoogle Scholar
  7. Charli, J. L., Pascual, I., Cruz, R., & Vargas, M. A. (2006). Post-secretory inactivation of peptides in the hypothalamic-adenohypophyseal axis: Focus on pyroglutamyl peptidase II, the thyrotropin releasing hormone inactivating ectoenzyme. In P. Joseph-Bravo (Ed.), Molecular endocrinology (pp. 39–64). Kerala: Research Signpost, Transworld Research Network.Google Scholar
  8. Charli, J. L., Vargas, M. A., Cisneros, M., de Gortari, P., Baeza, M. A., Jasso P., et al. (1998). TRH inactivation in the extracellular compartment: Role of pyroglutamyl peptidase II. Neurobiology, 6, 45–57.PubMedGoogle Scholar
  9. Csuhai, E., Little, S. S., & Hersh, L. B. (1995). Inactivation of neuropeptides. Progress in Brain Research, 104, 131–142.PubMedGoogle Scholar
  10. Dauch, P., Masuo, Y., Vincent, J.-P., & Checler, F. (1993). A survey of the cerebral regionalization and ontogeny of eight exo- and endopeptidases in murines. Peptides, 14, 593–599.PubMedCrossRefGoogle Scholar
  11. de Gortari, P., Cisneros, M., & Joseph-Bravo, P. (2005b). Chronic ethanol or glucose consumption alter TRH content and PPII activity in rat limbic regions. Regulatory Peptides, 127, 141–150.CrossRefGoogle Scholar
  12. de Gortari, P., Fernández-Guardiola, A., Martínez, A., Cisneros, M., & Joseph-Bravo, P. (1995). Changes in TRH and its degrading enzyme pyroglutamyl peptidase II, during the development of amygdaloid kindling. Brain Research, 679, 144–150.PubMedCrossRefGoogle Scholar
  13. de Gortari, P., Joseph-Bravo, P., Monroy-Ruiz, J., Martínez, A., Cisneros, M., & Fernández-Guardiola, A. (1998). Brain thyrotropin-releasing hormone content varies through amygdaloid kindling development according to afterdischarge frequency and propagation. Epilepsia, 38, 897–903.CrossRefGoogle Scholar
  14. de Gortari, P., Romero, F., Cisneros, M., & Joseph-Bravo, P. (2005a). Acute administration of alcohol modulates pyroglutamyl peptidase II activity and mRNA levels in rat limbic regions. Neurochemistry International, 46, 347–356.CrossRefGoogle Scholar
  15. de Gortari, P., Uribe, R. M., García-Vázquez, I., Martínez, A., Aguilar-Valles, A., Charli, J. L., et al. (2006). Amygdala kindling differential regulates the expression of the elements involved in TRH transmission. Neurochemistry International, 38, 41–42.Google Scholar
  16. Dyer, S. H., Slaughter, C. A., Orth, K., Moomaw, C. R., & Hersh, L. B. (1990). Comparison of the soluble and membrane-bound forms of the puromycin-sensitive enkephalin-degrading aminopeptidases from rat. Journal of Neurochemistry, 54, 547–554.PubMedCrossRefGoogle Scholar
  17. Eckman, E. A., & Eckman, C. B. (2005). Aβ-degrading enzymes: Modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions, 33, 1101–1105.PubMedCrossRefGoogle Scholar
  18. Erakovic, V., Zupan, G., Vartjen, J., Laginja, V., & Simonic, A. (2001). Altered activities of rat brain metabolic enzymes caused by pentylenetetrazol kindling and pentylenetetrazol-induced seizures. Epilepsy Research, 43, 165–173.PubMedCrossRefGoogle Scholar
  19. Erdos, E. G., Wagner, B., Harbury, C. B., Painter, R. G., Skidgel, R. A., & Fa, X. G. (1989). Down regulation and inactivation of neutral endopeptidase 24.11 (enkephalinase) in human neutrophils. Journal of Biological Chemistry, 264, 14519–14523.PubMedGoogle Scholar
  20. Facchinetti, P., Rose, C., Schwartz, J. C., & Ouimet, T. (2003). Ontogeny, regional and cellular distribution of the novel metalloprotease neprilysin 2 in the rat: A comparison with neprilysin and endothelin-converting enzyme-1. Neuroscience, 118, 627–639.PubMedCrossRefGoogle Scholar
  21. Foster, J. A., Puchowicz, M. J., McIntyre, D. C., & Herkenham, M. (2004). Activin mRNA induced during amygdala kindling shows a spatiotemporal progression that tracks the spread of seizures. Journal of Comparative Neurology, 476, 91–102.PubMedCrossRefGoogle Scholar
  22. Fulcher, I. S., & Kenny, J. (1983). Proteins of the kidney microvillar membrane. Biochemical Journal, 211, 743–753.PubMedGoogle Scholar
  23. Gaudoux, F., Boileau, G., & Crine, P. (1993). Localization of neprilysin (EC mRNA in rat brain by in situ hybridization. Journal of Neuroscience Research, 34, 426–433.PubMedCrossRefGoogle Scholar
  24. Goddard, G. V., McIntyre, D. C., & Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25, 295–330.PubMedCrossRefGoogle Scholar
  25. Greenberg, L. J. (1962). Fluorometric measurement of alkaline phosphatase and aminopeptidase activities in the order of 10(−14) mole. Biochemical and Biophysical Research Communications, 9, 430–435.PubMedCrossRefGoogle Scholar
  26. Gros, C., Giros, B., & Schwartz, J. C. (1985). Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes. Biochemistry, 24, 2179–2185.PubMedCrossRefGoogle Scholar
  27. Heuer, H., Schäfer, K. H., O’Donnel, D., Walker, P., & Bauer, K. (2000). Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. Journal of Comparative Neurology, 428, 319–336.PubMedCrossRefGoogle Scholar
  28. Ishikura, N., Tsunashima, K., Watanabe, K. I., Nishimura, T., Shirayama, Y., & Kato, N. (2001). Temporal change of hippocampal enkephalin and dynorphin mRNA following trimethyltin intoxication in rats: Effect of anticonvulsant. Neuroscience Letters, 306, 157–160.PubMedCrossRefGoogle Scholar
  29. Joseph-Bravo, P., Fresán, M. E., Cisneros, M., Vargas, M. A., & Charli, J. L. (1994). Pyroglutamyl peptidase II activity is not in the processes of bulbospinal TRHergic neurons. Neuroscience Letters, 178, 243–246.PubMedCrossRefGoogle Scholar
  30. Knoblach, S. M., & Kubek, M. J. (1997a). Increases in thyrotropin-releasing hormone messenger RNA expression induced by a model of human temporal lobe epilepsy: Effect of partial and complete kindling. Neuroscience, 76, 85–95.CrossRefGoogle Scholar
  31. Knoblach, S. M., & Kubek, M. J. (1997b). Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: Effect of partial and complete kindling. Neuroscience, 76, 97–104.CrossRefGoogle Scholar
  32. Konkoy, C. S., & Davis, T. P. (1996). Ectoenzymes as sites of peptide regulation. Trends in Pharmacological Sciences, 17, 288–294.PubMedCrossRefGoogle Scholar
  33. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  34. Malfroy, B., Kado-Fong, H., Gros, C., Giros, B., Schwartz, J. C., & Hellmiss, R. (1989). Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: A member of a super family of zinc-metallohydrolases. Biochemical and Biophysical Research Communications, 161, 236–241.PubMedCrossRefGoogle Scholar
  35. Marti, M., Bregola, G., Morari, M., Gemignani, A., & Simonato, M. (2000). Somatostatin release in the hippocampus in the kindling model of epilepsy: A microdialysis study. Journal of Neurochemistry, 74, 2497–2503.PubMedCrossRefGoogle Scholar
  36. Mirski, M. A., & Ferrendelli, J. A. (1987). Interruption of the connections of the mammillary bodies protects against generalized pentylenetetrazol seizures in guinea pigs. Journal of Neuroscience, 7, 6662–6670.Google Scholar
  37. Morimoto, K., Fahnestock, M., Racine, R.-J. (2004). Kindling and status epilepticus models of epilepsy: Rewiring the brain. Progress in Neurobiology, 73, 1–60.PubMedCrossRefGoogle Scholar
  38. Noble, F., Banisadr, G., Jardinaud, G., Popovici, T., Lai-Kuen, R., Chan, H., et al. (2001). First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience, 105, 479–488.PubMedCrossRefGoogle Scholar
  39. O’Connor, B., & O’Cuinn, G. (1984). Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain. European Journal of Biochemistry, 144, 271–278.PubMedCrossRefGoogle Scholar
  40. O’Cuinn, G., O’Connor, B., Gilmartin, L., & Smyth, M. (1995). Neuropeptide inactivation by peptidases. In G. O’Cuinn (Ed.), Metabolism of brain peptides (pp. 99–157). Boca Raton, FL: CRC Press.Google Scholar
  41. Ouimet, T., Facchinetti, P., Rose, C., Bonhomme, M. C., Gros, C., & Schwartz, J. C. (2000). Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochemical and Biophysical Research Communications, 271, 565–570.PubMedCrossRefGoogle Scholar
  42. Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates (5th edn.). San Diego, CA: Elsevier.Google Scholar
  43. Racine, R. J. (1972). Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 281–294.PubMedCrossRefGoogle Scholar
  44. Rocha, L., Evans, C. J., & Maidment, N. T. (1997). Amygdala kindling modifies extracellular opioid peptide content in rat hippocampus measured by microdialysis. Journal of Neurochemistry, 68, 616–624.PubMedCrossRefGoogle Scholar
  45. Rocha, L., Maidment, N. T., Evans, C. J., Ackermann, R. F., & Engel Jr, J. (1996). Opioid peptide release and mu-receptor binding during amygdala kindling in rats: Regional discordances. Epilepsy Research Supplement, 12, 215–228.PubMedGoogle Scholar
  46. Romualdi, P., Bregola, G., Donatini, A., Capobianco, A., & Simonato, M. (1999). Region-specific changes in prodynorphin mRNA and ir-Dynorphin A levels after kindled seizures. Journal of Molecular Neuroscience, 13, 69–75.PubMedCrossRefGoogle Scholar
  47. Roques, B. P. (2000). Novel approaches to targeting neuropeptide systems. Trends in Pharmacological Sciences, 21, 475–483.PubMedCrossRefGoogle Scholar
  48. Rose, C., Voisin, S., Gros, C., Schwartz, J. C., & Ouimet, T. (2002). Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochemical Journal, 363, 697–705.PubMedCrossRefGoogle Scholar
  49. Rosen, J. B., Cain, C. J., Weiss, S. R., & Post, R. M. (1992). Alterations in mRNA of enkephalin, dynorphin, and thyrotropin-releasing hormone during amygdala kindling: An in situ hybridization study. Molecular Brain Research, 15, 247–255.PubMedCrossRefGoogle Scholar
  50. Sagratella, S. (1994). Enkephalinase inhibition and hippocampal excitatory effects of exogeneous and endogeneous opioids. Progress in Neuro-psychopharmacology and Biological Psychiatry, 18, 965–978.PubMedCrossRefGoogle Scholar
  51. Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., et al. (2005). Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nature Medicines, 11, 434–439.CrossRefGoogle Scholar
  52. Sánchez, E., Charli, J. L., Morales, C., Corkidi, G., Seidah, N., Joseph-Bravo, P., et al. (1997). Expression of the proprotein convertases PC1 and PC2 mRNAs in thyrotropin-releasing hormone neurons of the rat paraventricular nucleus of the hypothalamus. Brain Research, 761, 77–86.PubMedCrossRefGoogle Scholar
  53. Schwartz, J. C., Malfroy, B., & De La Baume, S. (1981). Biolological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase (“enkephalinase”) as neuropeptidase. Life Sciences, 29, 1715–1740.PubMedCrossRefGoogle Scholar
  54. Sharif, N. A., Towle, A. C., Burt, D. R., Mueller, R. A., & Breese, G. R. (1989). Cotransmitters: Differential effects of serotonin (5-HT)-depleting drugs on levels of 5-HT and TRH and their receptors in rat brain and spinal cord. Brain Research, 480, 365–371.PubMedCrossRefGoogle Scholar
  55. Shinoda, H., Nadi, N., & Schwartz, J. P. (1991). Alterations in somatostatin and proenkephalin mRNA in response to a single amygdaloid stimulation versus kindling. Molecular Brain Research, 11, 221–226.PubMedCrossRefGoogle Scholar
  56. Siems, W., Maul, B., Krause, W., Gerard, C., Hauser, K. F., Hersh, L. B., et al. (2000). Neutral endopeptidase and alcohol consumption, experiments in neutral endopeptidase-deficient mice. European Journal of Pharmacology, 397, 327–334.PubMedCrossRefGoogle Scholar
  57. Sumitomo, M., Shen, R., Walburg, M., Dai, J., Geng, Y., Navarro, D., et al. (2000). Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. Journal of Clinical Investigation, 106, 1399–1407.PubMedCrossRefGoogle Scholar
  58. Tieku, S., & Hooper, N. M. (1992). Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochemical Pharmacology, 44, 1725–1730.PubMedCrossRefGoogle Scholar
  59. Turner, A. J. (1998). Membrane alanyl aminopeptidase. In A. J. Barrett, N. D. Rawlings, J. F. Woessner (Eds.), Handbook of proteolytic enzymes (pp. 996–1000). San Diego, CA: Academic.Google Scholar
  60. Turner, A. J., Isaac, R. E., & Coates, D. (2001). The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays, 23, 261–269.PubMedCrossRefGoogle Scholar
  61. Tuunanen, J., & Pitkänen, A. (2000). Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Research, 39, 171–176.PubMedCrossRefGoogle Scholar
  62. Vargas, M. A., Méndez, M., Cisneros, M., Joseph-Bravo, P., & Charli, J. L. (1987). Regional distribution of the membrane bound pyroglutamate aminopeptidase degrading TRH in rat brain. Neuroscience Letters, 79, 311–314.PubMedCrossRefGoogle Scholar
  63. Waksman, G., Hamel, E., Fournie-Zaluski, M. C., & Rocques, B. P. (1986). Autoradiographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and μ and δ opioid receptors in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 83, 1523–1527.PubMedCrossRefGoogle Scholar
  64. Waters, S. M., Konkoy, C., & Davis, T. P. (1996). Haloperidol and apomorphine differentially affect neurpeptidase activity. Journal of Pharmacology and Experimental Therapeutics, 277, 113–120.PubMedGoogle Scholar
  65. Winkler, A., Buzás, B., Siems W.-E., Hedder, G., & Cox, B. M. (1998). Effect of ethanol drinking on the gene expression of opioid receptors, enkephalinase, and angiotensin-converting enzyme in two inbred mice strains. Alcoholism, Clinical and Experimental Research, 22, 1262–1271.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Patricia de Gortari
    • 1
  • Miguel Angel Vargas
    • 2
  • Adrián Martínez
    • 1
  • Arlene I. García-Vázquez
    • 2
  • Rosa María Uribe
    • 2
  • Lucía Chávez-Gutiérrez
    • 2
  • Víctor Magdaleno
    • 1
  • Guy Boileau
    • 3
  • Jean-Louis Charlí
    • 2
  • Patricia Joseph-Bravo
    • 2
    Email author
  1. 1.Div. Investigaciones en NeurocienciasInstituto Nacional de Psiquiatría Ramón de la Fuente MuñízMéxico D.F.México
  2. 2.Dept. Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM)CuernavacaMéxico
  3. 3.Dept. BiochimieUniversité de MontrealMontrealCanada

Personalised recommendations