Journal of Molecular Neuroscience

, Volume 32, Issue 1, pp 38–46 | Cite as

Effects of aging, dietary restriction and glucocorticoid treatment on housekeeping gene expression in rat cortex and hippocampus—Evaluation by real time RT-PCR

  • N. Tanic
  • M. Perovic
  • A. Mladenovic
  • S. Ruzdijic
  • S. Kanazir
Original Articles


Accurate normalization is the prerequisite for obtaining reliable results in the quantification of gene expression. Using TaqMan Real Time RT-PCR, we carried out an extensive evaluation of five most commonly used endogenous controls, gapdh, β-actin, 18S rRNA, hprt and cypB, for their presumed stability of expression, in rat cortex and hippocampus, during aging, under dietary restriction and dexamethasone treatment. Valid reference genes (HKGs) were identified using GeNorm and Norm-Finder software packages and by direct comparison of Ct values. Analysis revealed gapdh and β-actin as the most stable HKGs for all treatments analyzed, combined or separately, in the cortex, while in the hippocampus gapdh/hprt and β-actin/hprt are the combination of choice for the single or combined effects of dietary restriction/dexamethasone, respectively. All treatments significantly influenced expression of 18S rRNA and cypB in both structures. In addition, we used gapdh and normalization factor, calculated by GeNorm, to compare the expression of α-syn in the cortex. Our results demonstrate the importance of the right choice of HKG and suggest the appropriate endogenous control to be used for TaqMan RT-PCR analysis of mRNA expression in rat cortex and hippocampus for selected experimental paradigms.


TaqMan real time RT-PCR House-keeping genes Cortex Hippocampus Aging Dietary restriction Dexamethasone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agardh, E., Gustavsson, C., Hagert, P., Nilsson, M., & Agardh, C. D. (2006). Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels. Metabolism, 55, 168–174.PubMedCrossRefGoogle Scholar
  2. Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.PubMedCrossRefGoogle Scholar
  3. Barrachina, M., Castano, E., Dalfo, E., Maes, T., Buesa, C., & Ferrer, I. (2006). Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Disease, 22, 265–273.PubMedCrossRefGoogle Scholar
  4. Bhatia, P., Taylor, W. R., Greenberg, A. H., & Wright, J. A. (1994). Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28S-ribosomal RNA gene expression as RNA loading controls for northern blot analysis of cell lines of varying malignant potential. Analytical Biochemistry, 216, 223–226.PubMedCrossRefGoogle Scholar
  5. Bond, B. C., Virley, D. J., Cairns, N. J., Hunter, A. J., Moore, G. B. T., Moss, A. W., et al. (2002). The quantification of gene expression in an animal model of brain ischemia using TaqMan real-time RT-PCR. Molecular Brain Research, 106, 101–116.PubMedCrossRefGoogle Scholar
  6. Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.PubMedCrossRefGoogle Scholar
  7. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 29, 23–39.PubMedCrossRefGoogle Scholar
  8. Bustin, S. A., & Nolan, T. (2004). Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. Journal of Biomolecular Techniques, 15, 155–166.PubMedGoogle Scholar
  9. Chen, J., Rider, D. A., & Ruan, R. (2006). Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver. Journal of Gerontology, 61A, 20–27.Google Scholar
  10. de Leeuw, W. J., Slagboom, P. E., & Vijg, J. (1989). Quantitative comparison of mRNA levels in mammalian tissues: 28S ribosomal RNA level as an accurate internal control. Nucleic Acids Research, 17, 10137–10138.PubMedCrossRefGoogle Scholar
  11. Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., & Zumla, A. (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 37, 112–119.PubMedGoogle Scholar
  12. Gatta, L. B., Albertini, A., Ravid, R., & Finazzi, D. (2002). Levels of β-secretase bace and α-secretase adam10 mRNA in Alzheimer hippocampus. Clinical Neuroscience and Neuropathology, 13, 2031–2034.Google Scholar
  13. Gutala, R. V., & Reddy, P. H. (2004). The use of real-time PCR in a gene expression study of Alzheimer’s disease post-mortem brains. Journal of Neuroscience Methods, 132, 101–107.PubMedCrossRefGoogle Scholar
  14. Krussel, J. S., Huang, H. Y., Simon, C., Behr, B., Pape, A. R., Wen, Y., et al. (1998). Single blastomeres within human preimplantation embryos express different amounts of messenger ribonucleic acid for beta-actin and interleukin-1 receptor type I. Journal of Clinical Endocrinology and Metabolism, 83, 953–959.PubMedCrossRefGoogle Scholar
  15. Law, A. J., Weickert, C. S., Webster, M. J., Herman, M. M., Kleinman, J. E., & Harrison, P. J. (2003). Changes in NMDA receptor subunit mRNAs and cyclophilin mRNA during development of the human hippocampus. Annals of the New York Academy of Sciences, 1003, 426–430.PubMedCrossRefGoogle Scholar
  16. Lindblom, J., Haitina, T., Fredriksson, R., & Schioth, H. B. (2005). Differential regulation of nuclear receptors, neuropeptides and peptide hormones in the hypothalamus and pituitary of food restricted rats. Molecular Brain Research, 133, 37–46.PubMedCrossRefGoogle Scholar
  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.PubMedCrossRefGoogle Scholar
  18. Macdonald, R., Bingham, S., Bond, B. C., Parsons, A. A., & Philpott, K. L. (2001). Determination of changes in mRNA expression in a rat model of neuropathic pain by Taqman quantitative RT-PCR. Molecular Brain Research, 90, 48–56.PubMedCrossRefGoogle Scholar
  19. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Research, 29, 2002–2007.CrossRefGoogle Scholar
  20. Proudnikov, D., Yuferov, V., LaForge, K. S., Ho, A., & Jeanne Kreek, M. (2003). Quantification of multiple mRNA levels in rat brain regions using real time optical PCR. Molecular Brain Research, 112, 182–185.PubMedCrossRefGoogle Scholar
  21. Roth, C. M. (2002). Quantifying gene expression. Current Issues in Molecular Biology, 4, 93–100.PubMedGoogle Scholar
  22. Sawada, T., Morinobu, S., Tsuji, S., Kawano, K., Watanabe, T., Suenaga, T., et al. (2004). Reduction in levels of amphiphysin 1 mRNA in the hippocampus of aged rats subjected to repeated variable stress. Neuroscience, 126, 461–466.PubMedCrossRefGoogle Scholar
  23. Schmittgen, T. D., & Zakrajsek, B. A. (2000). Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69–81.PubMedCrossRefGoogle Scholar
  24. Shimokawa, I., Fukuyama, T., Yanagihara-Outa, K., Tomita, M., Komatsu, T., Higami, Y., et al. (2003). Effects of caloric restriction on gene expression in the arcuate nucleus. Neurobiology of Aging, 24, 117–123.PubMedCrossRefGoogle Scholar
  25. Slagboom, P. E., de Leeuw, W. J., & Vijg, J. (1990). Messenger RNA levels and methylation patterns of gapdh and beta-actin genes in rat liver, spleen and brain in relation to aging. Mechanism of Ageing and Development, 53, 243–257.CrossRefGoogle Scholar
  26. Sturzenbaum, S. R., & Kille, P. (2001). Control genes in quantitative molecular biological techniques: The variability of invariance. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 130, 281–289.CrossRefGoogle Scholar
  27. Tatton, W. G., Chalmers-Redman, R. M., Elstner, M., Leesch, W., Jagodzinski, F. B., Stupak, D. P., et al. (2000). Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. Journal of Neural Transmission. Supplementum, 60, 77–100.PubMedGoogle Scholar
  28. Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., et al. (1999). Housekeeping genes as internal standards: Use and limits. Journal of Biotechnology, 75, 291–295.PubMedCrossRefGoogle Scholar
  29. Tichopad, A., Didier, A., & Pfaffl, M. W. (2004). Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Molecular and Cellular Probes, 18, 45–50.PubMedCrossRefGoogle Scholar
  30. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.I-0034.IICrossRefGoogle Scholar
  31. Wall, S. J., & Edwards, D. R. (2002). Quantitative reverse transcriptionpolymerase chain reaction (RT-PCR): A comparison of primerdropping, competitive, and real-time RT-PCRs. Analytical Biochemistry, 300, 269–273.PubMedCrossRefGoogle Scholar
  32. Webster, M. J., Weickert, C. S., Herman, M. M., & Kleinman, J. E. (2002). BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Developmental Brain Research, 139, 139–150.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • N. Tanic
    • 1
  • M. Perovic
    • 1
  • A. Mladenovic
    • 1
  • S. Ruzdijic
    • 1
  • S. Kanazir
    • 1
  1. 1.Institute for Biological ResearchBelgradeSerbia

Personalised recommendations