Journal of Molecular Neuroscience

, Volume 19, Issue 1–2, pp 187–193 | Cite as

The utility of muscarinic agonists in the treatment of alzheimer’s disease

Preclinical Development

Abstract

Alzheimer’s disease is a progressive neurological disorder characterized by amyloid plaques and neurofibrillary tangles along with memory and cognitive deficits associated with a loss of basal forebrain cholinergic neurons. Efforts to treat Alzheimer’s disease have focused on compounds that elevate cholinergic activity such as cholinesterase inhibitors and direct acting muscarinic and nicotinic agonists. Low efficacy and poor selectivity of available compounds have limited the clinical utility of muscarinic agonists. Recent studies suggesting a role for muscarinic agonists in regulating the production of Aβ raise the possibility that selective M1 agonists could be useful in treating not only the symptoms, but also the underlying cause(s) of Alzheimer’s disease. Thus, renewed efforts have focused on the development of compounds with improved selectivity for M1 receptors and lower toxicity. 5-(3-ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine (CDD-0102) is a potent M1 agonist with a low side effect profile that enhances memory function in animal models of Alzheimer’s disease. The available preclinical data suggest that CDD-0102 may be useful in the treatment of Alzheimer’s disease.

Index Entries

Muscarinic agonist Alzheimer’s disease CDD-0102 amyloid precursor protein memory drug development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus R. T., Dean R. L. D., Beer B., and Lippa A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558), 408–414.PubMedCrossRefGoogle Scholar
  2. Bodick N. C., Offen W. W., Levey A. I., Cutler N. R., Gauthier S. G., et al. (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54(4), 465–473.PubMedGoogle Scholar
  3. Brann M. R., Buckley N. J., Jones S. V., and Bonner T. I. (1987) Expression of a cloned muscarinic receptor in A9 L cells. Mol. Pharmacol. 32(4), 450–455.PubMedGoogle Scholar
  4. Buxbaum J. D., Ruefli A. A., Parker C. A., Cypess A. M., and Greengard P. (1994) Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc. Natl. Acad. Sci. USA 91(10), 4489–4493.PubMedCrossRefGoogle Scholar
  5. Bymaster F. P., Carter P. A., Peters S. C., Zhang W., Ward J. S., Mitch C. H., et al. (1998) Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res. 795(1–2), 179–190.PubMedCrossRefGoogle Scholar
  6. Caulfield M. P., Higgins G. A., and Straughan D. W. (1983) Central administration of the muscarinic receptor subtype-selective antagonist pirenzepine selectively impairs passive avoidance learning in the mouse. J. Pharm. Pharmacol. 35(2), 131–132.PubMedGoogle Scholar
  7. Dornan W. A., McCampbell A. R., Tinkler G. P., Hickman L. J., Bannon A. W., Decker M. W., and Gunther K. L. (1997) Comparison of site specific injections into the basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192 IgG saporin. Behav. Brain. Res. 86(2), 181–189.PubMedCrossRefGoogle Scholar
  8. Dunbar P. G., Durant G. J., Fang Z., Abuh Y. F., El-Assadi A. A., Ngur D. O., et al. (1993) Design, synthesis, and neurochemical evaluation of 5-(3-alkyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists. J. Med. Chem. 36(7), 842–847.PubMedCrossRefGoogle Scholar
  9. Dunbar P. G., Durant G. J., Rho T., Ojo B., Huzl J. J. 3rd, Smith D. A., et al. (1994) Design, synthesis, and neurochemical evaluation of 2-amino-5- (alkoxycarbonyl)-3,4,5,6-tetrahydropyridines and 2-amino-5-(alkoxycarbonyl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists. J. Med. Chem. 37(17), 2774–2782.PubMedCrossRefGoogle Scholar
  10. Fonnum F. (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24(2), 407–409.PubMedCrossRefGoogle Scholar
  11. Hagan J. J., Jansen J. H., and Broekkamp C. L. (1987) Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology 93(4), 470–476.PubMedCrossRefGoogle Scholar
  12. Hock C., Maddalena A., Heuser I., Naber D., Oertel W., von der Kammer H., et al. (2000) Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of Aβ in patients with Alzheimer’s disease. Soc. Neurosci. New Orleans, LA (abstract).Google Scholar
  13. Hollander E., Mohs R. C., and Davis K. L. (1986) Cholinergic approaches to the treatment of Alzheimer’s disease. Br. Med. Bull. 42(1), 97–100.PubMedGoogle Scholar
  14. Hoss W., Woodruff J. M., Ellerbrock B. R., Periyasamy S., Ghodsi-Hovsepian S., Stibbe J., et al. (1990) Biochemical and behavioral responses of pilocarpine at muscarinic receptor subtypes in the CNS. Comparison with receptor binding and low- energy conformations. Brain Res. 533(2), 232–238.PubMedCrossRefGoogle Scholar
  15. Huang X. P., Williams F. E., Peseckis S. M., and Messer W. S., Jr. (1998) Pharmacological characterization of human m1 muscarinic acetylcholine receptors with double mutations at the junction of TM VI and the third extracellular domain. J. Pharmacol. Exp. Ther. 286(3), 1129–1139.PubMedGoogle Scholar
  16. Iga Y., Arisawa H., Ogane N., Saito Y., Tomizuka T., Nakagawa-Yagi Y., et al. (1998) (+/−)-cis-2-methylspiro[1,3-oxathiolane-5,3′-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors. Jpn. J. Pharmacol. 78(3), 373–380.PubMedCrossRefGoogle Scholar
  17. Levey A. I. (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 93(24), 13541–13546.PubMedCrossRefGoogle Scholar
  18. Li X. (1998) Determination of CDD-0102-J in rat serum by high performance liquid chromatography and ultrafiltration. Department of Pharmacology, The University of Toledo, Toledo, OH, pp. 1–52.Google Scholar
  19. Messer W. S. Jr., Abuh Y. F., Ryan K., Shepherd M. A., Schroeder M., Abunada S., Sehgal R., and El-Assadi A. A. (1997) Tetrahydropyrimidine derivatives display functional selectivity for M1 muscarinic receptors in brain. Drug Dev. Res. 40, 171–184.CrossRefGoogle Scholar
  20. Messer W. S. Jr., Abuh Y. F., Liu Y., Periyasamy S., Ngur D. O., Edgar M. A., El-Assadi A. A., et al. (1997) Synthesis and biological characterization of 1,4,5,6-tetrahydropyrimidine and 2-amino-3,4,5,6-tetrahydropyridine derivatives as selective m1 agonists. J. Med. Chem. 40(8), 1230–1246.PubMedCrossRefGoogle Scholar
  21. Messer W. S. Jr., Bohnett M., and Stibbe J. (1990) Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci. Lett. 116(1–2), 184–189.PubMedCrossRefGoogle Scholar
  22. Messer W. S. Jr., Rajeswaran W. G., Cao Y., Zhang H. J., El-Assadi A. A., Dockery C., et al. (2000) Design and development of selective muscarinic agonists for the treatment of Alzheimer’s disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors. Pharm. Acta Helv. 74(2–3), 135–140.PubMedCrossRefGoogle Scholar
  23. Messer W. S. Jr., Stibbe J. R., and Bohnett M. (1991) Involvement of the septohippocampal cholinergic system in representational memory. Brain Res. 564(1), 66–72.PubMedCrossRefGoogle Scholar
  24. Moos W. H., Davis R. E., Schwarz R. D., and Gamzu E. R. (1988) Cognition activators. Med. Res. Rev. 8(3), 353–391.PubMedCrossRefGoogle Scholar
  25. Murga C., Fukuhara S., and Gutkind J. S. (2000) A novel role for phosphatidylinositol 3-kinase beta in signaling from G protein-coupled receptors to Akt. J. Biol. Chem. 275(16), 12069–12073.PubMedCrossRefGoogle Scholar
  26. Murga C., Laguinge L., Wetzker R., Cuadrado A., and Gutkind J. S. (1998) Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase-gamma. J. Biol. Chem. 273(30), 19080–19085.PubMedCrossRefGoogle Scholar
  27. Nitsch R. M., Deng M., Tennis M., Schoenfeld D., and Growdon J. H. (2000) The selective muscarinic M1 agonist AF102B decreases levels of total A[beta] in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 48, 913–918.PubMedCrossRefGoogle Scholar
  28. Nitsch R. M., Slack B. E., Wurtman R. J., and Growdon J. H. (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080), 304–307.PubMedCrossRefGoogle Scholar
  29. Ojo B., Dunbar P. G., Durant G. J., Nagy P. I., Huzl J. J. 3rd., Periyasamy S., et al. (1996) Synthesis and biochemical activity of novel amidine derivatives as m1 muscarinic receptor agonists. Bioorg. Med. Chem. 4(10), 1605–1615.PubMedCrossRefGoogle Scholar
  30. Perry E. K., Tomlinson B. E., Blessed G., Bergmann K., Gibson P. H., and Perry R. H. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2(6150), 1457–1459.PubMedCrossRefGoogle Scholar
  31. Schwarz R. D., Callahan M. J., Coughenour L. L., Dickerson M. R., Kinsora J. J., Lipinski W. J., et al. (1999) Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical chemical and in vivo characterization. J. Pharmacol. Exp. Ther. 291(2), 812–822.PubMedGoogle Scholar
  32. Wall S. J., Yasuda R. P., Hory F., Flagg S., Martin B. M., Ginns E. I., and Wolfe, B. B. (1991) Production of antisera selective for m1 muscarinic receptors using fusion proteins: distribution of m1 receptors in rat brain. Mol. Pharmacol. 39(5), 643–649.PubMedGoogle Scholar
  33. Walsh T. J., Herzog C. D., Gandhi C., Stackman R. W., and Wiley R. G. (1996) Injection of IgG 192-saporin into the medial septum produces cholinergic hyypofunction and dose-dependent working memory deficits. Brain Res. 726(1–2), 69–79.PubMedCrossRefGoogle Scholar
  34. Watson J. M., Hunter A. J., Brown A. M., and Middlemiss D. N. (1999) In vitro characterisation of the muscarinic receptor partial agonist, sabcomeline, in rat cortical and heart membranes. Eur. J. Pharmacol. 370(1), 69–77.PubMedCrossRefGoogle Scholar
  35. Weihl C. C., Ghadge G. D., Kennedy S. G., Hay N., Miller R. J., and Roos R. P. (1999) Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J. Neurosci. 19(13), 5360–5369.PubMedGoogle Scholar
  36. Wess J., Bonner T. I., and Brann M. R. (1990) Chimeric m2/m3 muscarinic receptors: role of carboxyl terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol. Pharmacol. 38(6), 872–877.PubMedGoogle Scholar
  37. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., and Delon M. R. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215(4537), 1237–1239.PubMedCrossRefGoogle Scholar
  38. Wolf B. A., Wertkin A. M., Jolly Y. C., Yasuda R. P., Wolfe B. B., Konrad R. J., et al. (1995) Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J. Biol. Chem. 270(9), 4916–4922.PubMedCrossRefGoogle Scholar
  39. Wood M. D., Murkitt K. L., Ho M., Watson J. M., Brown F., Hunter A. J., and Middlemiss D. N. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br. J. Pharmacol. 126(7), 1620–1624.PubMedCrossRefGoogle Scholar
  40. Wrenn C. C., Lappi D. A., and Wiley R. G. (1999) Threshold relationship between lesion extent of the cholinergic basal forebrain in the rat and working memory impairment in the radial maze. Brain Res. 847(2), 284–298.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Departments of Pharmacology, Medicinal, and Biological Chemistry, College of PharmacyThe University of ToledoToledo

Personalised recommendations