Journal of Molecular Neuroscience

, Volume 19, Issue 1–2, pp 155–161 | Cite as

Statin therapy for Alzheimer’s disease

Will it work?
  • Suzana S. Petanceska
  • Steven DeRosa
  • Vicki Olm
  • Nichole Diaz
  • Ali Sharma
  • Tara Thomas-Bryant
  • Karen Duff
  • Miguel Pappolla
  • Lorenzo M. Refolo
Preclinical Development

Abstract

Disease-modifying therapies are being developed for Alzheimer’s disease (AD). These are expected to slow the clinical progression of the disease or delay its onset. Cerebral accumulation of amyloid β (Aβ) peptides is an early and perhaps necessary event for establishing AD pathology. Consequently therapies aimed at attenuating brain amyloidosis are expected to be disease modifying. Based on the epidemiological evidence pointing to a link between cholesterol metabolism and AD and the numerous laboratory studies implicating cholesterol in the process of Aβ production and accumulation, it is now believed that cholesterol-lowering therapies will be of value as disease modifying agents. Several epidemiological studies revealed that statin use for the treatment of coronary arterial disease is associated with a decreased prevalence or a decreased risk of developing AD. These observations require both preclinical and clinical validation. The former involves testing statins in one or more animal models of AD in order to establish which disease features are affected by statin treatment, the relative efficacy with which different statins modify these features and the mechanism(s) by which statins affect AD phenotypes. The latter requires prospective, randomized, placebo controlled trials to evaluate the effect of statin treatment on cognitive and AD biomarker outcomes. We have initiated a study aimed at determining the effects of atorvastatin (LipitorR), a statin with the largest US market share, on brain Aβ deposition in the PSAPP transgenic mouse model of Alzheimer’s amyloidosis. Our results indicate that Lipitor treatment markedly attenuates Aβ deposition in this animal model.

Index Entries

Amyloid cholesterol statin therapy animal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama H., Barger S., Barnum S., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.PubMedCrossRefGoogle Scholar
  2. Bodovitz S. and Klein W. L. (1996) Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271, 4436–4440.PubMedCrossRefGoogle Scholar
  3. Blumenthal R. S. (2000) Statins: effective antiatherosclerotic therapy. Am. Heart 4, 577–583.CrossRefGoogle Scholar
  4. Cucchiara B. and Kasner S. E. (2001) Use of statins in CNS disorders. J. Neurol. Sci. 187, 81–89.PubMedCrossRefGoogle Scholar
  5. Evans R. M., Emsley C. L., Gao S., Sahota A., Hall K. S., Farlow M. R., and Hendrie H. (2000) Serum cholesterol, APOE genotype, and the risk of Alzheimer’s disease: a population-based study of African Americans. Neurology 54, 240–242.PubMedGoogle Scholar
  6. Fassbender K., Simons M., Bergmann C., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 5856–5861.PubMedCrossRefGoogle Scholar
  7. Frears E. R., Stephens D. J., Walters C. E., Davies H., and Austen B. M. (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10, 1699–1705.PubMedCrossRefGoogle Scholar
  8. Friedhoff L. T., Cullen E. I., Geoghagen N. S., et al. (2001) Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int. J. Neuropsychopharmacol. 4, 127–130.PubMedCrossRefGoogle Scholar
  9. Hamelin B. A. and Turgeon J. (1998) Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol. Sci. 19, 26–37.PubMedCrossRefGoogle Scholar
  10. Howland D. S., Trusko S. P., Savage M. J., et al. (1998) Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J. Biol. Chem. 273, 16576–16582.PubMedCrossRefGoogle Scholar
  11. Holcomb L., Gordon M. N., McGowan E., et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.PubMedCrossRefGoogle Scholar
  12. Hutton M., Perez-Tur J., and Hardy J. (1998) Genetics of Alzheimer’s disease. Essays Biochem. 33, 117–131.PubMedGoogle Scholar
  13. Jarvik G. P., Austin M. A., Fabsitz R. R., et al. (1994) Genetic influences on age-related change in total cholesterol, low-density lipoprotein-cholesterol, and triglyceride levels: longitudinal apolipoprotein E genotype effects. Genet. Epidemiol. 11, 375–384.PubMedCrossRefGoogle Scholar
  14. Jarvik G. P., Wijsman E. M., Kukull W. A., et al. (1995) Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study. Neurology 45, 1092–1096.PubMedGoogle Scholar
  15. Jick H., Zornberg G. L., Jick S. S., Seshadri S., and Drachman D. A. (2000) Statins and the risk of dementia. Lancet 356, 1627–1631.PubMedCrossRefGoogle Scholar
  16. Kalmijn S., Launer L. J., Ott A., et al. (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol. 42, 776–782.PubMedCrossRefGoogle Scholar
  17. Maron D. J., Fazio S., and Linton M. F. (2000) Current perspectives on statins. Circulation 101, 207–213.PubMedGoogle Scholar
  18. Mizuno T., Haass C., Michikawa M., et al. (1998) Cholesterol-dependent generation of a unique amyloid beta-protein from apically missorted amyloid precursor protein in MDCK cells. Biochim. Biophys. Acta 1373, 119–130.PubMedCrossRefGoogle Scholar
  19. Moghadasian M. H. (1999) Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci. 13, 1329–1337.CrossRefGoogle Scholar
  20. Notkola I. L., Sulkava R., Pekkanen J., et al. (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17, 14–20.PubMedCrossRefGoogle Scholar
  21. Puglielli L., Konopka G., Pack-Chung E., et al. (2001) Acylcoenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 905–912.Google Scholar
  22. Refolo L. M., Pappolla M. A., Malester B., et al. (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331.PubMedCrossRefGoogle Scholar
  23. Refolo L. M., Pappolla M. A., LaFrancois J., et al. (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 5, 890–899.CrossRefGoogle Scholar
  24. Roher A. E., Kuo Y. M., Kokjohn K. M., et al. (1999) Amyloid and lipids in the pathology of Alzheimer disease. Amyloid 6, 136–145.PubMedGoogle Scholar
  25. Simons M., Keller P., De Strooper B., et al. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 6460–6464.PubMedCrossRefGoogle Scholar
  26. Sparks D. L., Scheff S. W., Hunsaker J. C., et al. (1994) Induction of Alzheimer’s-like beta-amyloid immunore-activity in brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94.PubMedCrossRefGoogle Scholar
  27. Sparks D. L. (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann. NY Acad. Sci. 826, 128–146.PubMedCrossRefGoogle Scholar
  28. Sparks D. L., Martin T. A., Gross D. G., and Hunsaker J. C. III (2000) Link between heart disease, cholesterol, and alzheimer’s disease: a review. Microscopy Res. Technique 50, 287–290.CrossRefGoogle Scholar
  29. Tokuda T., Tamaoka A., Matsuno S., et al. (2001) Plasma levels of amyloid beta proteins did not differ between subjects taking statins and those not taking statins. Ann. Neurol. 49, 546–547.PubMedCrossRefGoogle Scholar
  30. Wolozin B., Kellman W., Ruosseau P., et al. (2000) Decreased prevalence of Alzheimer’s disease associated with 3-hydroxy3-methylglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443.PubMedCrossRefGoogle Scholar
  31. Wolozin B. (2001) A fluid connection: cholesterol and Abeta. Proc. Natl. Acad. Sci. USA 98, 5371–5373.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Suzana S. Petanceska
    • 1
  • Steven DeRosa
    • 1
  • Vicki Olm
    • 1
  • Nichole Diaz
    • 1
  • Ali Sharma
    • 1
  • Tara Thomas-Bryant
    • 2
  • Karen Duff
    • 1
  • Miguel Pappolla
    • 2
  • Lorenzo M. Refolo
    • 3
  1. 1.Dementia Research GroupNathan S. Kline Institute for Psychiatric ResearchOrangeburg
  2. 2.Department of PathologyUniversity of South Alabama Medical SchoolMobile
  3. 3.Institute for the Study of AgingNew York

Personalised recommendations