, 3:148 | Cite as

Electrodynamic Analysis of Near-Field Enhancement



The paper reviews computational models for plasmonic field enhancement, especially with applications to tip-enhanced scanning near-field optical microscopy (SNOM). Both plasmon-enhanced and scattering-type SNOM are considered. The importance of full electrodynamic analysis is emphasized: the electrostatic treatment is valid only if the size of the whole system, rather than its individual components (such as the apex of the tip or an individual particle in a cluster), is much smaller than the wavelength. Illustrative numerical results are included.


near-field enhancement plasmonic resonances scanning near-field optical microscopy (SNOM) tip-enhanced microscopy superfocusing electrodynamic analysis computer simulation the finite element method the finite difference method flexible local approximation methods 


  1. 1.
    Synge EH. A suggested method for extending microscopic resolution into the ultramicroscopic region. Philos Mag. 1928;6:356–62.Google Scholar
  2. 2.
    Synge EH. An application of piezoelectricity to microscopy. Philos Mag. 1932;13:297–300.Google Scholar
  3. 3.
    Richards D. Near-field microscopy: throwing light on the nanoworld. Philos Trans R Soc Lond A. 2003; 361(1813):2843–57.CrossRefADSGoogle Scholar
  4. 4.
    Hartschuh A, Beversluis MR, Bouhelier A, Novotny L. Tip-enhanced optical spectroscopy. Philos Trans R Soc Lond A. 2004;362:807–19.CrossRefADSGoogle Scholar
  5. 5.
    Kawata S, Shalaev VM, editors. Tip enhancement. Amsterdam: Elsevier Science; 2007.Google Scholar
  6. 6.
    O’Keefe JA. Resolving power of visible light. J Opt Soc Am. 1956;46(5):359.CrossRefGoogle Scholar
  7. 7.
    Ash EA, Nichols G. Super-resolution aperture scanning microscope. Nature. 1972;237:510–2.PubMedCrossRefADSGoogle Scholar
  8. 8.
    Lewis A, Isaacson M, Harootunian A, Murray A. Development of a 500 å spatial resolution light microscope I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy. 1984;13(3):227–31.CrossRefGoogle Scholar
  9. 9.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL. Breaking the diffraction barrier: optical microscopy of a nanometric scale. Science. 1991;251(5000):1468–70.PubMedCrossRefADSGoogle Scholar
  10. 10.
    Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992;257(5067):189–95.PubMedCrossRefADSGoogle Scholar
  11. 11.
    Novotny L. The history of near-field optics. Prog Opt. 2007;50:137–84.CrossRefGoogle Scholar
  12. 12.
    Wessel JE. Surface-enhanced optical microscopy. J Opt Soc Am B. 1985;2:1538–41.CrossRefADSGoogle Scholar
  13. 13.
    Wickramasinghe HK, Williams CC. Apertureless near field optical microscope. US Patent 4,947,034, 7 August 1990.Google Scholar
  14. 14.
    Zenhausern F, O’Boyle MP, Wickramasinghe HK. Apertureless near-field optical microscope. Appl Phys Lett. 1994;65(13):1623–25.CrossRefADSGoogle Scholar
  15. 15.
    Zenhausern F, Martin Y, Wickramasinghe HK. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science. 1995;269(5227):1083–5.PubMedCrossRefADSGoogle Scholar
  16. 16.
    Wang L, Xu X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl Phys Lett. 2007;90(26):261105.CrossRefADSGoogle Scholar
  17. 17.
    Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Phys Rev Lett. 2000;85(14):3029–32, October.PubMedCrossRefADSGoogle Scholar
  18. 18.
    Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature. 2002;418(6894):159–62.PubMedCrossRefADSGoogle Scholar
  19. 19.
    Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett. 2003;83(2):368–70.CrossRefADSGoogle Scholar
  20. 20.
    Keilmann F, Hillenbrand R. Near-field microscopy by elastic light scattering from a tip. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci. 2004;362(1817):787–805.CrossRefADSGoogle Scholar
  21. 21.
    Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt Express. 2008;16(2):494–501.PubMedCrossRefADSGoogle Scholar
  22. 22.
    Kawata S, Shalaev VM, editors. Nanophotonics with surface plasmons. Amsterdam: Elsevier Science; 2007.Google Scholar
  23. 23.
    Hallen HD, Jahncke CL. The electric field at the apex of a near-field probe: implications for nano-raman spectroscopy. J Raman Spectrosc. 2003;34(9):655–62.CrossRefADSGoogle Scholar
  24. 24.
    Lee KG, Kihm HW, Kihm JE, et al. Vector field microscopic imaging of light. Nat Photon. 2007;1:53–6.CrossRefADSGoogle Scholar
  25. 25.
    Lee KG, Kihm HW, Ahn KJ, Ahn JS, Suh YD, Lienau C, Kim DS. Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape. Opt Express. 2007;15(23):14993–5001.CrossRefADSPubMedGoogle Scholar
  26. 26.
    Gersen H, Novotny L, Kuipers L, et al. On the concept of imaging nanoscale vector fields. Nat Photon. 2007;1(5):242.CrossRefADSGoogle Scholar
  27. 27.
    Kim J, Song K-B. Recent progress of nano-technology with nsom. Micron. 2007;38(4):409–26, June.PubMedCrossRefGoogle Scholar
  28. 28.
    Kreibig U, Vollmer M. Optical properties of metal clusters. New York: Springer; 1995.Google Scholar
  29. 29.
    Maier SA, Atwater HA. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys. 2005;98:011101.CrossRefADSGoogle Scholar
  30. 30.
    Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.Google Scholar
  31. 31.
    Ha Y-K, Kim J-E, Park HY, Kee C-S, Lim H. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities. Phys Rev B. 2002;66(7):075109, August.CrossRefADSGoogle Scholar
  32. 32.
    Kreibig U, Von Fragstein C. Limitation of electron mean free path in small silver particles. Z Phys. 1969;224(4):307–23.CrossRefADSGoogle Scholar
  33. 33.
    Liebsch A. Surface-plasmon dispersion and size dependence of mie resonance: silver versus simple metals. Phys Rev B. 1993;48(15):11317–28, October.CrossRefADSGoogle Scholar
  34. 34.
    Liebsch A. Surface plasmon dispersion of Ag. Phys Rev Lett. 1993;71(1):145–8, July.PubMedCrossRefADSGoogle Scholar
  35. 35.
    Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M. Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B. 1998;57(3):1963–70, January.CrossRefADSGoogle Scholar
  36. 36.
    Quinten M. Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Z Phys B Condens Matter. 1996;101(2):211–7.CrossRefADSGoogle Scholar
  37. 37.
    Quinten M. Optical effects associated with aggregates of clusters. J Clust Sci. 1999;10(2):319–58.CrossRefGoogle Scholar
  38. 38.
    Scaffardi LB, Tocho JO. Size dependence of refractive index of gold nanoparticles. Nanotechnology. 2006;17(5):1309–15.CrossRefADSGoogle Scholar
  39. 39.
    Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH. Scattering spectra of single gold nanoshells. Nano Lett. 2004;4(12):2355–9.CrossRefADSGoogle Scholar
  40. 40.
    Stoller P, Jacobsen V, Sandoghdar V. Measurement of the complex dielectric constant of a single gold nanoparticle. Opt Lett. 2006;31(16):2474–6.PubMedCrossRefADSGoogle Scholar
  41. 41.
    Kerker M, Wang DS, Chew H. Surface enhanced raman-scattering (sers) by molecules adsorbed at spherical particles. Appl Opt. 1980;19:3373–88.CrossRefADSGoogle Scholar
  42. 42.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.CrossRefGoogle Scholar
  43. 43.
    Tsukerman I. Computational methods for nanoscale applications: particles, plasmons and waves. New York: Springer; 2007.Google Scholar
  44. 44.
    Panofsky WKH, Phillips M. Classical electricity and magnetism. Reading: Addison-Wesley; 1962.MATHGoogle Scholar
  45. 45.
    Harrington RF. Time-harmonic electromagnetic fields. New York: Wiley-IEEE Press; 2001.Google Scholar
  46. 46.
    Smythe WB. Static and dynamic electricity. Amsterdam: John Benjamins; 1989.Google Scholar
  47. 47.
    Dai J, Čajko F, Tsukerman I, Stockman MI. Electrodynamic effects in plasmonic nanolenses. Phys Rev B Condens Matter. 2008;77(11):115419.ADSGoogle Scholar
  48. 48.
    Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett. 2003;91(22):227402.PubMedCrossRefADSGoogle Scholar
  49. 49.
    Fredkin DR, Mayergoyz ID. Resonant behavior of dielectric objects (electrostatic resonances). Phys Rev Lett. 2003;91(25):253902.PubMedCrossRefADSGoogle Scholar
  50. 50.
    Mayergoyz ID, Fredkin DR, Zhang Z. Electrostatic (plasmon) resonances in nanoparticles. Phys Rev B. 2005;72(15):155412.CrossRefADSGoogle Scholar
  51. 51.
    Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and emission of light by small particles. Cambridge: Cambridge University Press; 2002.Google Scholar
  52. 52.
    Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transfer. 1996;55:535–75.CrossRefADSGoogle Scholar
  53. 53.
    Mishchenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T. T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J Quant Spectrosc Radiat Transfer. 2004;88:357–406.Google Scholar
  54. 54.
    Mishchenko MI, Travis LD. Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J Quant Spectrosc Radiat Transfer. 1998;60:309–24.CrossRefADSGoogle Scholar
  55. 55.
    Mackowski DW. Analysis of radiative scattering for multiple sphere configurations. Proc R Soc Lond A. 1991;433:599–614.MATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Mackowski DW, Mishchenko MI. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A. 1996;13:2266–77.CrossRefADSGoogle Scholar
  57. 57.
    Xu Yl. Electromagnetic scattering by an aggregate of spheres. Appl Opt. 1995;34:4573–88.CrossRefADSGoogle Scholar
  58. 58.
    Barber P, Yeh C. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl Opt. 1975;14(12):2864–72.ADSGoogle Scholar
  59. 59.
    Stratton JA. Electromagnetic theory. McGraw-Hill: New York; 1941.MATHGoogle Scholar
  60. 60.
    Doicu A, Eremin YA, Wriedt T. Convergence of the T-matrix method for light scattering from a particle on or near a surface. Opt Commun. 1999;159:266–77.CrossRefADSGoogle Scholar
  61. 61.
    Wriedt T, Doicu A. T-matrix method for light scattering from a particle on or near an infinite surface. In: Moreno F, González F, editors. Springer lecture notes in physics, vol. 534. New York: Springer; 2000. p. 113–32.Google Scholar
  62. 62.
    Hafner C. Post-modern electromagnetics: using intelligent MaXwell solvers. New York: Wiley; 1999.Google Scholar
  63. 63.
    Hafner C. MaX-1: a visual electromagnetics platform for PCs. New York: Wiley; 1999.Google Scholar
  64. 64.
    Moreno E, Erni D, Hafner C, Vahldieck R. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. Opt Soc Am A. 2002;19(1):101–11.CrossRefADSGoogle Scholar
  65. 65.
    Esteban R, Vogelgesang R, Kern K. Simulation of optical near and far fields of dielectric apertureless scanning probes. Nanotechnology. 2006;17(2):475–82.CrossRefADSGoogle Scholar
  66. 66.
    Esteban R, Vogelgesang R, Kern K. Tip-substrate interaction in optical near-field microscopy. Phys Rev B Condens Matter. 2007;75(19):195410.ADSGoogle Scholar
  67. 67.
    Draine B, Flatau P. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11:1491–9.CrossRefADSGoogle Scholar
  68. 68.
    Draine B, Flatau PJ. User guide to the discrete dipole approximation code DDSCAT 6.1; 2006.Google Scholar
  69. 69.
    Flatau PJ. Improvements in the discrete-dipole approximation method of computing scattering and absorption. Opt Lett. 1997;22:1205–7.PubMedCrossRefADSGoogle Scholar
  70. 70.
    Lakhtakia A, Mulholland G. On two numerical techniques for light scattering by dielectric agglomerated structures. J Res Natl Inst Stand Technol. 2003;98(6):699–716.Google Scholar
  71. 71.
    Peltoniemi J. Electromagnetic scattering by irregular grains using variational volume integral equation method. J Quant Spectrosc Radiat Transfer. 1996;55(5):637–47.CrossRefADSGoogle Scholar
  72. 72.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B. 2001;105:2343–50.CrossRefGoogle Scholar
  73. 73.
    Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nanoletters. 2003;3(8):1087–90.ADSGoogle Scholar
  74. 74.
    Félidj N, Aubard J, Lévi G. Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids. J Chem Phys. 1999;111(3):1195–208.CrossRefADSGoogle Scholar
  75. 75.
    Tsukerman I. Electromagnetic applications of a new finite-difference calculus. IEEE Trans Magn. 2005;41(7):2206–25.CrossRefADSGoogle Scholar
  76. 76.
    Tsukerman I. A class of difference schemes with flexible local approximation. J Comput Phys. 2006;211(2):659–99.MATHCrossRefADSMathSciNetGoogle Scholar
  77. 77.
    Čajko F, Tsukerman I. Flexible approximation schemes for wave refraction in negative index materials. IEEE Trans Magn. 2008;44(6):1378–81, June.CrossRefADSGoogle Scholar
  78. 78.
    Dai J, Tsukerman I, Rubinstein A, Sherman S. New computational models for electrostatics of macromolecules in solvents. IEEE Trans Magn. 2007;43(4):1217–20.CrossRefADSGoogle Scholar
  79. 79.
    Tsukerman I, Čajko F. Photonic band structure computation using FLAME. IEEE Trans Magn. 2008;44(6):1382–5, June.CrossRefADSGoogle Scholar
  80. 80.
    Tsukerman I. Quasi-homogeneous backward-wave plasmonic structures: theory and accurate simulation.; 2008.
  81. 81.
    Li Z, Yang Z, Xu H. Comment on “self-similar chain of metal nanospheres as an efficient nanolens”. Phys Rev Lett. 2006;97(7):079701.PubMedCrossRefADSGoogle Scholar
  82. 82.
    Li K, Stockman MI, Bergman DJ. Li, Stockman, and Bergman reply. Phys Rev Lett. 2006;97(7):079702.CrossRefADSGoogle Scholar
  83. 83.
    Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12–15):4370–9.CrossRefADSGoogle Scholar
  84. 84.
    Monk P. Finite element methods for Maxwell’s equations. Oxford: Clarendon; 2003.MATHCrossRefGoogle Scholar
  85. 85.
    Jin J. The finite element method in electromagnetics. New York: Wiley–IEEE Press; 2002.MATHGoogle Scholar
  86. 86.
    Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far-infrared. Appl Opt. 1983;22:1099–119.CrossRefADSGoogle Scholar
  87. 87.
    Weaver JH, Olson CG, Lynch, DW. Optical properties of crystalline tungsten. Phys Rev B. 1975;12:1293–7.CrossRefADSGoogle Scholar
  88. 88.
    Martin YC, Hamann HF, Wickramasinghe HK. Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys. 2001;89(10):5774–8.CrossRefADSGoogle Scholar
  89. 89.
    Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Čajko F, Tsukerman I. Optical properties and enhancement factors of the tips for apertureless near-field optics. J Opt A Pure Appl Opt. 2006;8:S183–90.CrossRefADSGoogle Scholar
  90. 90.
    Neacsu CC, Steudle GA, Raschke MB. Plasmonic light scattering from nanoscopic metal tips. Appl Phys B. 2004;80:295–300.CrossRefADSGoogle Scholar
  91. 91.
    Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. New York: Wiley; 2000.MATHGoogle Scholar
  92. 92.
    Szabó B, Babuška I. Finite element analysis. New York: Wiley; 1991.MATHGoogle Scholar
  93. 93.
    Oden JT, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl. 2001;41:735–56.MATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Toselli A, Widlund O. Domain decomposition methods—algorithms and theory. In: Springer series in computational mathematics, vol. 34. New York: Springer; 2005.Google Scholar
  95. 95.
    Brehm M, Schliesser A, Čajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Opt Express. 2008;16(15):11203–15.PubMedCrossRefADSGoogle Scholar
  96. 96.
    Merlin R. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science. 2007;317(5840):927–9, August.PubMedCrossRefADSGoogle Scholar
  97. 97.
    Grbic A, Jiang L, Merlin R. Near-field plates: subdiffraction focusing with patterned surfaces. Science. 2008;320(5875):511–3, April.PubMedCrossRefADSGoogle Scholar
  98. 98.
    Tsukerman I. Superfocusing by plasmonic/dielectric layers Opt Lett. 2008 (accepted).

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Igor Tsukerman
    • 1
  • František Čajko
    • 1
  • Jianhua Dai
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of AkronAkronUSA

Personalised recommendations