Advertisement

NanoBiotechnology

, Volume 3, Issue 3–4, pp 172–196 | Cite as

Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules

  • Catalin C. Neacsu
  • Samuel Berweger
  • Markus B. Raschke
Article

Abstract

The fundamental mechanisms of tip-enhanced Raman spectroscopy (TERS) have been investigated, including the role of the plasmonic excitation of the metallic tips, the nature of the optical tip–sample coupling, and the resulting local-field enhancement and confinement responsible for ultrahigh resolution imaging down to just several nanometers. Criteria for the distinction of near-field signature from far-field imaging artifacts are addressed. TERS results of molecules are presented. With enhancement factors as high as 109, single-molecule spectroscopy is demonstrated. Spatially resolved vibrational mapping of crystalline nanostructures and determination of crystallographic orientation and domains is discussed making use of the symmetry properties of the tip scattering response and the intrinsic Raman selection rules.

Keywords

tip-enhanced Raman imaging nanospectroscopy tip-enhanced Raman spectroscopy 

Notes

Acknowledgements

The authors would like to thank Nicolas Behr, Jens Dreyer, Thomas Elsaesser, Christoph Lienau, and Claus Ropers for valuable discussions and support. Funding by the Deutsche Forschungsgemeinschaft through SFB 658 (“Elementary Processes in Molecular Switches at Surface”) the National Science Foundation (NSF CAREER grant CHE 0748226 and IGERT Fellowship) is greatly acknowledged.

References

  1. 1.
    Chalmers J, Griffiths P, editors. Handbook of vibrational spectroscopy. Chichester: Wiley; 2002.Google Scholar
  2. 2.
    Kuzmany H. Solid-state spectroscopy. New York: Springer; 1998.Google Scholar
  3. 3.
    Wilson EB, Decius JC, Cross PC. Molecular vibrations: the theory of infrared and Raman vibrational spectra. New York: Dover; 1980.Google Scholar
  4. 4.
    Hendra PJ, Stratton PM. Laser-Raman spectroscopy. Chem Rev. 1968;69:325.Google Scholar
  5. 5.
    Hendra PJ, Vear CJ. Laser Raman spectroscopy: a review. The Analyst. 1970;95:321.ADSGoogle Scholar
  6. 6.
    Yu PP, Cardona M. Fundamentals of semiconductors. 3rd ed. New York: Springer; 2005.Google Scholar
  7. 7.
    Aroca R. Surface-enhanced vibrational spectroscopy. New York: Wiley; 2006.Google Scholar
  8. 8.
    Demtröder W. Laser spectroscopy: baisc concepts and instrumentation. 2nd ed. New York: Springer; 1996.Google Scholar
  9. 9.
    Tabaksblat R, Meier RJ, Kip BJ. Confocal Raman microspectroscopy: theory and application to thin polymer samples. Appl Spectr. 1992;46:60.ADSGoogle Scholar
  10. 10.
    Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv f Mikroskop Anat. 1873;9:413.Google Scholar
  11. 11.
    Strutt (Lord Rayleigh) J. On the theory of optical images, with special reference to the microscope. Phil Mag. 1896;42:167.Google Scholar
  12. 12.
    Lewis A, Isaacson M, Muray A, Harootunian A: Scanning optiecal spectral microscopy with 500 Å resolution. Biophys J. 1983;41:405a.Google Scholar
  13. 13.
    Pohl DW, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett. 1984;44:651.ADSGoogle Scholar
  14. 14.
    Lewis A, Isaacson M, Harootunian A, Muray A. Development of a 500 Åspatial resolution light microscope. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 1984;13:227.Google Scholar
  15. 15.
    Fillard J. Near field optics and nanoscopy. Singapore: world Scientific; 1997.Google Scholar
  16. 16.
    Courjon D. Near-field microscopy and near-field optics. London: Imperial College Press; 2003.Google Scholar
  17. 17.
    Kawata S, Ohtus M, Irie M. Nanooptics. New York: Springer; 2002.Google Scholar
  18. 18.
    Novotny L, Stranick SJ. Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem. 2006:57:303.PubMedGoogle Scholar
  19. 19.
    Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press; 2006.Google Scholar
  20. 20.
    Jahncke CL, Paesler MA, Hallen HD. Raman imaging with near-field scanning optical microscopy. Appl Phys Lett. 1995;67:2483.ADSGoogle Scholar
  21. 21.
    Jahncke CL, Hallen HD, Paesler MA. Nano-Raman spectroscopy and imaging with a near-field scanning optical microscopes. J Raman Spectrosc. 1996;27:579.ADSGoogle Scholar
  22. 22.
    Webster S, Batchelder DN, Smith DA. Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy. Appl Phys Lett. 1998;72:1478.ADSGoogle Scholar
  23. 23.
    Serio MD, Mohapatra H, Zenobi R, Deckert V. Investigation of the liquid-liquid interface with high spatial resolution using near-field Raman spectroscopy. Chem Phys Lett. 2006;417:425.Google Scholar
  24. 24.
    Fleischmann M, Hendra P, McQuillan A. Raman-spectra of pyridine adsorbed at a silver interface. Chem Phys Lett. 1974;26:163.ADSGoogle Scholar
  25. 25.
    Jeanmaire D, Van Duyne R. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:1.Google Scholar
  26. 26.
    Albrecht M, Creighton J. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99:5215.Google Scholar
  27. 27.
    Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 1978;69:4159.ADSGoogle Scholar
  28. 28.
    Gersten JI, Nitzan A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys. 1980;73:3023.ADSGoogle Scholar
  29. 29.
    Gersten JI. The effect of surface roughness on surface enhanced Raman scattering. J Chem Phys. 1980;72:5779.ADSGoogle Scholar
  30. 30.
    Gersten JI. Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys. 1980;72:5780.ADSGoogle Scholar
  31. 31.
    McCall SL, Platzman PM, Wolff PA. Surface enhanced Raman scattering. Phys Lett A. 1980;77:381.ADSGoogle Scholar
  32. 32.
    Kerker M, Wang DS, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl Opt. 1980;19:4159.ADSGoogle Scholar
  33. 33.
    Gersten JI, Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys. 1980;75:1139.ADSGoogle Scholar
  34. 34.
    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267.PubMedGoogle Scholar
  35. 35.
    Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering. J Phys: Condens Matter. 1992;4:1143.ADSGoogle Scholar
  36. 36.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667.ADSGoogle Scholar
  37. 37.
    Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102.PubMedGoogle Scholar
  38. 38.
    Xu H, Bjerneld EJ, Käll M, Börjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering. Phys Rev Lett. 1999;83:4357.ADSGoogle Scholar
  39. 39.
    Bjerneld EJ, Johansson P, Käll M. Single molecule vibrational fine-structure of tyrosine adsorbed on Ag nano-crystals. Single Mol. 2000;1:239.ADSGoogle Scholar
  40. 40.
    Weiss A, Haran G. Time-dependent single-molecule Raman scattering as a probe of surface dynamics. J Phys Chem. 2001;105:12348.Google Scholar
  41. 41.
    Dieringer J, Lettan R, Scheidt K, Van Duyne R. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc. 2007;129:16249.PubMedGoogle Scholar
  42. 42.
    Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman Scattering of single rhodamine 6G molecules. J Phys Chem B. 2000;104:11965.Google Scholar
  43. 43.
    Xu H, Aizpurua J, Käll M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318.ADSGoogle Scholar
  44. 44.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99:2957.PubMedGoogle Scholar
  45. 45.
    Haynes C, Yonzon C, Zhang X, Van Duyne R. Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J Raman Spectrosc. 2005;36:471.ADSGoogle Scholar
  46. 46.
    Aravind PK, Rendel RW, Metiu H. A new geometry for field enhancement in surface-enhanced spectroscopy. Chem Phys Lett. 1982;85:396.ADSGoogle Scholar
  47. 47.
    Zenhausern F, O’Boyle MP, Wickramasinghe HK. Apertureless near-field optical microscope. Appl Phys Lett. 1994;65:1623.ADSGoogle Scholar
  48. 48.
    Inouye Y, Kawata S. Near-field scanning optical microscope with a metallic probe tip. Opt Lett. 1994;19:159.ADSGoogle Scholar
  49. 49.
    Wessel J. Surface-enhanced optical microscopy. J Opt Soc Am B. 1985;2:1538.ADSGoogle Scholar
  50. 50.
    Fischer UC, Pohl DW. Observation of single-particle plasmons by near-field optical spectroscopy. Phys Rev Lett. 1989;62:458.PubMedADSGoogle Scholar
  51. 51.
    Specht M, Pedarnig JD, Heckl WM, Hänsch TW. Scanning plasmon near-field microscopy. Phys Rev Lett. 1992;68:477.ADSGoogle Scholar
  52. 52.
    Bachelot R, Gleyzes P, Boccara AC. Near-field optical microscope based on local perturbation of a diffraction spot. Opt Lett. 1995;20:1924.Google Scholar
  53. 53.
    Koglin J, Fischer UC, Fuchs H. Material contrast in scanning near-field optical microscopy at 1–10 nm resolution. Phys Rev B. 1997;55:7977.ADSGoogle Scholar
  54. 54.
    Sánchez EJ, Novotny L, Xie XS. Near-field fluorescence microscopy on two-photon excitation with metal tips. Phys Rev Lett. 1999;82:4014.ADSGoogle Scholar
  55. 55.
    Keilmann F, van der Weide DW, Eickelkamp T, Merz R, Stockle D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt Commun. 1996;129:15.ADSGoogle Scholar
  56. 56.
    Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature. 1999;399:134.ADSGoogle Scholar
  57. 57.
    Knoll B, Keilmann F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt Commun. 2000;182:321.ADSGoogle Scholar
  58. 58.
    Raschke MB, Molina L, Elsaesser T, Kim DH, Knoll W, Hinrichs K. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. ChemPhysChem. 2005;6:2197.PubMedGoogle Scholar
  59. 59.
    ad V Shalaev SK, editor. Tip enhancement. In: Advances in nano-optics and nano-photonics. Amsterdam: Elsevier; 2007.Google Scholar
  60. 60.
    Kneipp K, Moskovits M, Kneipp H, editors. Surface−Enhanced Raman scattering: physics and applications. Topics in applied physics. Berlin: Springer; 2006.Google Scholar
  61. 61.
    Rasmussen A, Deckert V. New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy. Anal Bioanal Chem. 2005;381:165.PubMedGoogle Scholar
  62. 62.
    Novotny L. The history of near-field optics. Progr Opt. 2007;50:137.Google Scholar
  63. 63.
    Krug II JT, Sánchez EJ, Xie XS. Design of near-field optical probes with optimal field enhancement by finite difference tipe domain electromagnetic simulation. J Chem Phys. 2002;116:10895.ADSGoogle Scholar
  64. 64.
    Richards D, Milner RG, Huang F, Festy F. Tip-enhanced Raman microscopy: practicalities and limitations. J Raman Spectrosc. 2003;34:663.ADSGoogle Scholar
  65. 65.
    Kawata S. Near-field optics and surface plasmon polaritons. Berlin: Springer; 2001.Google Scholar
  66. 66.
    Stoeckle RM, Suh YD, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett. 2000;318:131.ADSGoogle Scholar
  67. 67.
    Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett. 2000;76:3130.ADSGoogle Scholar
  68. 68.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Opt Commun. 2000;183:333.ADSGoogle Scholar
  69. 69.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Near-field Raman scattering enhanced by a metallized tip. Chem Phys Lett. 2001;335:369.ADSGoogle Scholar
  70. 70.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. J Chem Phys. 2002;117:1296.ADSGoogle Scholar
  71. 71.
    Anderson MS, Pike WT. A Raman-atomic force microscope for apertureless-near-field spectroscopy and optical trapping. Rev Sci Instrum. 2002;73:1198.ADSGoogle Scholar
  72. 72.
    Hartschuh A, Anderson N, Novotny L. Near-field Raman spectroscopy using a sharp metal tip. J Microscop. 2002;210:234.MathSciNetGoogle Scholar
  73. 73.
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett. 2003;90:095503.PubMedADSGoogle Scholar
  74. 74.
    Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys Rev B. 2004;69:155418.ADSGoogle Scholar
  75. 75.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett. 2004;92:220801.PubMedADSGoogle Scholar
  76. 76.
    Hayazawa N, Ichimura T, Hashimoto M, Inouye Y, Kawata S. Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy. J Appl Phys. 2004;95:2676.ADSGoogle Scholar
  77. 77.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields. J Raman Spectrosc. 2005;36:541.ADSGoogle Scholar
  78. 78.
    Anderson N, Hartschuh A, Cronin S, Novotny L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J Am Chem Soc. 2005;127:2533.PubMedGoogle Scholar
  79. 79.
    Domke K, Zhang D, Pettinger B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J Am Chem Soc. 2006;128:14721.PubMedGoogle Scholar
  80. 80.
    Verma P, Yamada K, Watanabe H, Inouye Y, Kawata S. Near-field Raman scattering investigation of tip effects on C60 molecules. Phys Rev B. 2006;73:145416.ADSGoogle Scholar
  81. 81.
    Neacsu CC, Dreyer J, Behr N, , Raschke MB. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys Rev B. 2006;73:193406.ADSGoogle Scholar
  82. 82.
    Steidtner J, Pettinger B. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. Rev Sci Instr. 2007;78:103104.ADSGoogle Scholar
  83. 83.
    Hayazawa N, Watanabe H, Saito Y, Kawata S. Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. J Chem Phys. 2006;125:244706.PubMedADSGoogle Scholar
  84. 84.
    Neugebauer U, Roesch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem. 2006;7:1428.PubMedGoogle Scholar
  85. 85.
    Zhang W, Yeo BS, Schmid T, Zenobi R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C. 2007;111:1733.Google Scholar
  86. 86.
    Jersch J, Demming F, Hildenhagen L, Dickmann K. Field enhancement of optical radiation in the nearfield of scanning probe microscope tips. Appl Phys A. 1998;66:29.ADSGoogle Scholar
  87. 87.
    Demming F, Jersch J, Dickmann K, Geshev PI. Calculation of the field enhancement on laser-illuminated scanning probe tips by the boundary element method. Appl Phys B. 1998;66:593.ADSGoogle Scholar
  88. 88.
    Klein S, Witting T, Dickmann K, Geshev P, Hietschold M. On the field enhancement at laser-illuminated scanning probe tips. Single Mol. 2002;3:281.ADSGoogle Scholar
  89. 89.
    Mills DL. Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces. Phys Rev B. 2002;65:125419.ADSGoogle Scholar
  90. 90.
    Wu S, Mills DL. STM-induced enhancement of dynamic dipole moments on crystal surfaces: Theory of the lateral resolution. Phys Rev B. 2002;65:205420.ADSGoogle Scholar
  91. 91.
    Micic M, Klymyshyn N, Suh YD, Lu HP. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. J Phys Chem. 2003;107:1574.Google Scholar
  92. 92.
    Neacsu CC, Reider GA, Raschke MB. Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures. Phys Rev B. 2005;71(20):201402.ADSGoogle Scholar
  93. 93.
    Neacsu CC, Steudle GA, Raschke MB. Plasmonic light scattering from nanoscopic metal tips. Appl Phys B. 2005;80(3):295.ADSGoogle Scholar
  94. 94.
    Roth RM, Panoiu NC, Adams MM, Osgood RM, Neacsu CC, Raschke MB. Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. Opt Expr. 2006;14:2921.ADSGoogle Scholar
  95. 95.
    Behr N, Raschke M. Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement. J Phys Chem C. 2008;112:3766.Google Scholar
  96. 96.
    Neacsu CC, Dreyer J, Behr N, Raschke MB. Reply to “Comment on ‘Scanning-probe Raman spectroscopy with single-molecule sensitivity’”. Phys Rev B. 2007;75:236402.ADSGoogle Scholar
  97. 97.
    Anderson N, Anger P, Hartschuh A, Novotny L. Subsurface raman imaging with nanoscale resolution. Nano Lett. 2006;6(4):744.PubMedADSGoogle Scholar
  98. 98.
    Debus C, Lieb A, Drechsler A, Meixner AJ. Probing highly confined optical field in the focal region of a high NA parbolic mirror with subwavelength spatial resolution. J Microsc. 2002;210:203.MathSciNetGoogle Scholar
  99. 99.
    Anger P, Feltz A, Berghaus T, Meixner AJ. Near-field and confocal surface-enhanced resonance Raman spectroscopy at cryogenic temperatures. J Microsc. 2003;209:162.PubMedMathSciNetGoogle Scholar
  100. 100.
    Novotny L, Sánchez EJ, Xie XS. Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams. Ultramicroscopy. 1998;71:21.Google Scholar
  101. 101.
    Novotny L, Beversluis MR, Youngworth KS, Brown TG. Longitudinal field modes probed by single molecules. Phys Rev Lett. 2001;86(23):5251–4.PubMedADSGoogle Scholar
  102. 102.
    Karrai K, Tiemann I. Interfacial shear force microscopy. Phys Rev B. 2000;62:13174.ADSGoogle Scholar
  103. 103.
    Stipe BC, Mamin HJ, Stowe TD, Kenny TW, Rugar D. Noncontact friction and force fluctuations between closely spaced bodies. Phys Rev Lett. 2001;87:096801.PubMedADSGoogle Scholar
  104. 104.
    Gregor MJ, Blome PG, Schafer J, Ulbrich RG. Probe-surface interaction in near-field optical microscopy: The nonlinear bending force mechanism. Appl Phys Lett. 1996;68:307.ADSGoogle Scholar
  105. 105.
    Williamson RL, Brereton LJ, Antognozzi M, Miles MJ. Are artefacts in scanning near-field optical microscopy related to the misuse of shear force? Ultramicroscopy. 1998;71:165.Google Scholar
  106. 106.
    Hoppe S, Ctistis G, Paggel JJ, Fumagalli P. Spectroscopy of the shear force interaction in scanning near-field optical microscopy. Ultramicroscopy. 2005;102:221.PubMedGoogle Scholar
  107. 107.
    Karrai K, Grober RD. Piezoelectric tip sample distance control for near field optical microscopes. Appl Phys Lett. 1995;66:1842.ADSGoogle Scholar
  108. 108.
    Davy S, Spajer M, Courjon D. Influence of the water layer on the shear force damping in near-field microscopy. Appl Phys Lett. 1998;73:2594.ADSGoogle Scholar
  109. 109.
    Okajima T, Hirotsu S. Study of probe-surface interaction in shear-force microscopy: effects of humidity and lateral spring constant. Opt Rev. 1998;5:303.Google Scholar
  110. 110.
    Durkan C, Shvets IV. Investigation of the physical mechanisms of shear-force imaging. J Appl Phys. 1996;80:5659.ADSGoogle Scholar
  111. 111.
    Bernstein HJ, Buckingham AD. Resonance Raman spectra [and Discussion]. Phil Trans R Soc London A, Math Phys Sci. 1979;293:287.ADSGoogle Scholar
  112. 112.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett. 2004;92:096101.PubMedADSGoogle Scholar
  113. 113.
    Guckenberger R, Hartmann T, Wiegraebe W, Bauneister W. Scanning tunneling microsocpy II. New York: Springer; 1995.Google Scholar
  114. 114.
    Ibe J, Bey JP, Brandow S, Brizzolara R, Burnham N, Dilella D, Lee K, Marrian C, Colton R. On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol A. 1990;8:3570.ADSGoogle Scholar
  115. 115.
    Vasile MJ, Grigg DA, Griffith JE, Fitzgerald EA, Russell PE. Scanning probe tips formed by focused ion beams. Rev Sci Instr. 1991;62:2167.ADSGoogle Scholar
  116. 116.
    Nam AJ, Teren A, Lusby TA, Melmed AJ. Benign making of sharp tips for STM and FIM: Pt, Ir, Au, Pd, and Rh. J Vac Sci technol B. 1995;13:1556.Google Scholar
  117. 117.
    Iwami M, Uehara Y, Ushioda S. Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instr. 1998;69:4010.ADSGoogle Scholar
  118. 118.
    Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J Phys Chem C. 2007;111(26):9460–4.Google Scholar
  119. 119.
    Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys Rev B. 2007;75:045412.ADSGoogle Scholar
  120. 120.
    Kuhn S, Hkanson U, Rogobete L, Sandoghdar V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett. 2006;97:017402.PubMedADSGoogle Scholar
  121. 121.
    Ren B, Picardi G, Pettinger B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instr. 2004;75:837.ADSGoogle Scholar
  122. 122.
    Picardi G, Nguyen Q, Schreiber J, Ossikovski R. Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy. Eur Phy J App Phys. 2007;40:197.ADSGoogle Scholar
  123. 123.
    Klein M, Schwitzgebel G. An improved lamellae drop-off technique for sharp tip preparation in scanning tunneling microscopy. Rev Sci Instr. 1997;68:3099.ADSGoogle Scholar
  124. 124.
    Wang X, Liu Z, Zhuang MD, Zhang HM, Wang X, Xie ZX, Wu DY, Ren B, Tian ZQ. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. App Phys Lett. 2007;91:101105.ADSGoogle Scholar
  125. 125.
    Melmed A. The art and science and other aspects of making sharp tips. J Vac Sci Technol B. 1990;9:601.Google Scholar
  126. 126.
    Frankenthal RP, Thompson DE. The anodic behavior of Gold in sulfuric acid solutions. J Electrochem Soc. 1976;123:799.Google Scholar
  127. 127.
    Mao BW, Ren B, Cai XW, Xiong LH. Electrochemical oscillatory behavior under a scanning electrochemical microscpic configuration. J Electroanal Chem. 1995;394:155.Google Scholar
  128. 128.
    Hillier J. On the investigation of specimen contamination in the electron microscope. J App Phys. 1947;19:226.ADSGoogle Scholar
  129. 129.
    Guise O, Ahner J, Yates J, Levy J. Formation and thermal stability of sub-10-nm carbon templates on Si(100). App Phys Lett. 2004;85:2352.ADSGoogle Scholar
  130. 130.
    Denk W, Pohl DW. Near-field optics: microscopy with nanometer-size fields. J Vac Sci Technol B. 1991;9:510.Google Scholar
  131. 131.
    Novotny L, Bian RX, Xie XS. Theory of nanometric optical tweezers. Phys Rev Lett. 1997;79:645.ADSGoogle Scholar
  132. 132.
    Porto JA, Johansson P, Apell SP, Lopez-Rios T. Resonance shift effects in apertureless scanning near-field optical microscopy. Phys Rev B. 2003;67:085409.ADSGoogle Scholar
  133. 133.
    Bohren C, Huffman D. Absorption and scattering of light by small particles. New York: Wiley; 1998.Google Scholar
  134. 134.
    Kretschmann E. Untersuchungen zur anregung und Streuung von Oberflaechenplasmaschwingungen an Silberschichten. PhD thesis, University Hamburg; 1972.Google Scholar
  135. 135.
    Leurgans P, Turner AF. Frustrated total internal reflection interference filters. J Opt Soc Am. 1947;37:983.PubMedGoogle Scholar
  136. 136.
    Heinz TF, Loy MMT, Thompson WA. Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation. Phys Rev Lett. 1985;54:63.PubMedADSGoogle Scholar
  137. 137.
    Boyd RW. Nonlinear optics. 2nd ed. London: Academic; 2003.Google Scholar
  138. 138.
    Ropers C, Neacsu CC, Raschke MB, Albrecht M, Lienau C, Elsaesser T. Light confinement at ultrasharp metallic tips. Jpn J Appl Phys. 2008;47:6051.ADSGoogle Scholar
  139. 139.
    Bouhelier A, Renger J, Beversluis MR, Novotny L. Plasmon-coupled tip-enhanced near-field optical microscopy. J Microsc. 2003;210:220.PubMedMathSciNetGoogle Scholar
  140. 140.
    Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip−enhanced Raman SNOM. Ultramicroscopy. 2004;100:437.PubMedGoogle Scholar
  141. 141.
    Schneider SC, Grafstroem S, Eng LM. Scattering near-field optical microscopy of optically anisotropic systems. Phys Rev B. 2005;71:115418.ADSGoogle Scholar
  142. 142.
    Goncharenko AV, Dvoynenko MM, Chang HC, Wang JK. Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy. Appl Phys Lett. 2006;88:104101.ADSGoogle Scholar
  143. 143.
    Martin YC, Hamann HF, Wickramasinghe HK. Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys. 2001;89:5774.ADSGoogle Scholar
  144. 144.
    Downes A, Salter D, Elfick A. Finite element simulations of tip-enhanced Raman and fluorescence Spectroscopy. J Phys Chem B. 2006;110:6692.PubMedGoogle Scholar
  145. 145.
    Stratton JA. Electromagnetic theory. Sydney: Mcgraw-Hill; 1941.Google Scholar
  146. 146.
    Metiu H. Surface enhanced spectroscopy. Progr Surf Sci. 1984;17:153.ADSGoogle Scholar
  147. 147.
    Palik E, editor. Handbook of optical constants of solids. Berlin: Springer; 2000.Google Scholar
  148. 148.
    Demming AL, Festy F, Richards D. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. J Chem Phys. 2005;122:184716.PubMedADSGoogle Scholar
  149. 149.
    Jackson JD. Classical electrodynamics. 3rd ed. vol. 1, chapt. 2, New York: Wiley; 1999.Google Scholar
  150. 150.
    Geshev PI, Klein S, Witting T, Dickmann K, Hietschold M. Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface. Phys Rev B. 2004;70:075402.ADSGoogle Scholar
  151. 151.
    Aravind PK, Nitzan A, Metiu H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf Sci. 1983;110:189.Google Scholar
  152. 152.
    Pettinger B, Domke K, Zhang D, Schuster R, Ertl G. Direct monitoring of plasmon resonances in a tip-surface gap of varying width. Phys Rev B. 2007;76:113409.ADSGoogle Scholar
  153. 153.
    Berndt R, Gimzewski JK, Johansson P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys Rev Lett. 1991;67:4878.Google Scholar
  154. 154.
    Aizpurua J, Apell SP, Berndt R. Role of tip shape in light emission from the scanning tunneling microscope. Phys Rev B. 2000;62:2065.ADSGoogle Scholar
  155. 155.
    Raether H. Surface plasmons on smooth and rough surfaces and on gratings. New York: Springer; 1988.Google Scholar
  156. 156.
    Lueck HB, Daniel DC, McHale JL. Resonance Raman study of solvent effects on a series of triarylmethane dyes. J Raman Spectrosc. 1993;24:363.ADSGoogle Scholar
  157. 157.
    Beversluis MR, Bouhelier A, Novotny L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev B. 2003;68:115433.ADSGoogle Scholar
  158. 158.
    Moskovits M. Surface-enhanced spectroscopy. Rev Mod Opt. 1985;57:783.ADSGoogle Scholar
  159. 159.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005;30:368.Google Scholar
  160. 160.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced raman excitation spectroscopy. J Phys Chem B. 2005;109:11279.PubMedGoogle Scholar
  161. 161.
    Aravind PK, Metiu H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure: applications to surface enhanced spectroscopy. Surf Sci. 1983;124:506.ADSGoogle Scholar
  162. 162.
    Fowles R. Introduction to modern optics. 2nd ed. Holt: Rinehart & Winston; 1975.Google Scholar
  163. 163.
    Lee KG, Kihm HW, Kihm JE, Choi WJ, Kim H, Ropers C, Park DJ, Yoon YC, Choi SB, Woo DH, Kim J, Lee B, Park QH, Lienau C, Kim DS. Vector field microscopic imaging of light. Nat Photon. 2006;1:53.ADSGoogle Scholar
  164. 164.
    Gersen H, Novotny L, Kuipers L, van Hulst NF. On the concept of imaging nanoscale vector fields. Nat Photon. 2007;1:242.ADSGoogle Scholar
  165. 165.
    Lee KG, Kihm HW, Kihm JE, Choi WJ, Kim H, Ropers C, Park DJ, Yoon YC, Choi SB, Woo DH, Kim J, Lee B, Park QH, Lienau C, Kim DS. On the concept of imaging nanoscale vector fields. Nat Photon. 2007;1:243.ADSGoogle Scholar
  166. 166.
    Poborchii V, Tada T, Kanayama T. Subwavelength-resolution Raman microscopy of Si structures using metal-particle-topped AFM probes. Jpn J Appl Phys. 2005;44:202.ADSGoogle Scholar
  167. 167.
    Schneider S, Brehm G, Freunscht P. Comparison of surface-enhanced Raman and hyper-Raman spectra of the triphenylmethane dyes crystal violet and malachite green. Phys Stat Sol B. 1995;189:37.Google Scholar
  168. 168.
    Polubotko AM. SERS phenomenon as a manifestation of quadrupole interaction of light with molecules. Phys Lett. 1990;146:81.Google Scholar
  169. 169.
    Sass JK, Neff H, Moskovits M, Holloway S. Electric field gradient effects on the spectroscopy of adsorbed molecules. J Phys Chem. 1981;85:621.Google Scholar
  170. 170.
    Creighton J. Spectroscopy of surfaces. Advances in spectroscopy, vol. 16. chap. Selection rules for surface-enhanced raman spectroscopy, 37. New York: Wiley; 1988.Google Scholar
  171. 171.
    Ayars EJ, Hallen HD, Jahncke CL. Electric field gradient effects in Raman spectroscopy. Phys Rev Lett. 2000;85:4180.PubMedADSGoogle Scholar
  172. 172.
    Harris DC, Bertolucci MD. Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. New York: Dover; 1989.Google Scholar
  173. 173.
    Moskovits M. Surface selection rules. J Chem Phys. 1982;77:4408.ADSGoogle Scholar
  174. 174.
    Polubotko AM. Some anomalies of the SERS spectra of symmetrical molecules adsorbed on transition metal substrates: application of the dipole-quadrupole SERS theory. J Raman Spectr. 2005;36:522.ADSGoogle Scholar
  175. 175.
    Erdheim GR, Birke RL, Lombardi JR. Surface enhanced Raman spectrum of pyrazine. Observation of forbidden lines at the electrode surface. Chem Phys Lett. 1980;69:495.ADSGoogle Scholar
  176. 176.
    Dornhaus R, Long MB, Benner RE, Chang RK. Time development of SERS from pyridine, pyrimidine, pyrazine, and cyanide adsorbed on Ag electrodes during an oxidation-reduction cycle. Surf Sci. 1980;93:240.ADSGoogle Scholar
  177. 177.
    Moskovits M, Dilellla DP. Enhanced Raman spectra of ethylene and propylene adsorbed on silver. Chem Phys Lett. 1980;73:500.ADSGoogle Scholar
  178. 178.
    Maher RC, Cohen LF, Etchegoin P. Single molecule photo-bleaching observed by surface enhanced resonant Raman scattering (SERRS). Chem Phys Lett. 2002;352:378.ADSGoogle Scholar
  179. 179.
    Wang Z, Rothberg LJ. Origins of blinking in single-molecule Raman spectroscopy. J Phys Chem. 2005;109:3387.Google Scholar
  180. 180.
    Xie XS, Trautman JK. Optical studies of single molecules at room temperatures. Annu Rev Phys Chem. 1998;49:441.PubMedGoogle Scholar
  181. 181.
    Moyer P, Smith J, Eng L, Meixner A. Surface-Enhanced Raman scattering spectroscopy of single carbon domains on individual Ag nanoparticles on a 25 ms time scale. J Am Chem Soc. 2000;122:5409.Google Scholar
  182. 182.
    Kudelski A, Pettinger B. SERS on carbon chain segments: monitoring locally surface chemistry. Chem Phys Lett. 2000;321:356.ADSGoogle Scholar
  183. 183.
    Picardi G. Raman spectroscopy and light emission at metal surfaces enhanced by the optical near-field of a scanning tunneling tips. Ph.D. thesis, Freie Universität Berlin; 2003.Google Scholar
  184. 184.
    Futamata M, Maruyama Y, Ishikawa M. Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J Molec Struct. 2005;735:75.ADSGoogle Scholar
  185. 185.
    Le Ru EC, Etchegoin PG, Meyer M. Enhancement factor distribution around a single SERS hot-spot and its relation to single molecule detection. J Chem Phys. 2006;125:204701.PubMedADSGoogle Scholar
  186. 186.
    Friedrich B, Herschbach D. Alignment and trapping of molecules in intense laser fields. Phys Rev Lett. 1995;74:4623.PubMedADSGoogle Scholar
  187. 187.
    Steidtner J, Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecule with 15 nm resolution. Phys Rev Lett. 2008;100:236101.PubMedADSGoogle Scholar
  188. 188.
    Chien CT, Wu MC, Wei CW, Yang HH, Wu JJ, Su WF, Lin CS, Chen YF. Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod. App Phys Lett. 2008;92:223102.ADSGoogle Scholar
  189. 189.
    Fan HM, Fan XF, Ni ZH, Shen ZX, Feng YP, Zou BS. Orientation-dependent Raman spectroscopy of single wirtzite CdS nanowires. J Phys Chem C. 2008;112:1865.Google Scholar
  190. 190.
    Lee N, Hartschuh RD, Mehtani D, Kisliuk A, Maguire JF, Green M, Foster MD, Sokolov AP. High contrast scanning nano-Raman spectroscopy of silicon. J Raman Spectrosc. 2007;38:789–96.ADSGoogle Scholar
  191. 191.
    Nguyen Q, Ossikovski R, Schreiberb J. Contrast enhancement on crystalline silicon in polarized reflection mode tip-enhanced Raman spectroscopy. Sci Direct. 2007;274:231–5.Google Scholar
  192. 192.
    Saito Y, Motohashi M, Hayazawa N, Iyoki M, S Kawata S. Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl Phys Lett. 2006;88:143109.ADSGoogle Scholar
  193. 193.
    Chen JY, Wiley BJ, Xia YN. One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir. 2007;23:4120.PubMedGoogle Scholar
  194. 194.
    Zhu Y, Ke C, Espinosa HD. Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp Mech. 2007;47:7.Google Scholar
  195. 195.
    Wang ZL. New developments in transmission electron microscopy on the nanoscale. Adv Mat. 2003;15:1497.ADSGoogle Scholar
  196. 196.
    Zhang XF, Zhang Z. Progress in transmission electron microscopy 2: applications in materials science (Springer Series in Surface Sciences). New York: Springer; 2001.Google Scholar
  197. 197.
    Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science. 2003;300:1419.PubMedADSGoogle Scholar
  198. 198.
    Chapman HN, Barty A, Marchesini S, Noy A, Hau-Riege SP, Cui C, Howells MR, Rosen R, He H, Spence JCH, Weierstall U, Beetz T, Jacobsen C, Shapiro D. High-resolution ab intio three dimensional x-ray diffraction microscopy. J Opt Soc Am A. 2006;5:1179.ADSGoogle Scholar
  199. 199.
    M DiDomenico SHW, Porto SPS. Raman spectrum of single-domain BaTiO3. Phys Rev. 1968;174:522–30.ADSGoogle Scholar
  200. 200.
    Li Z, Foster CM, Dai XH, Xu XZ, Chan SK, Lam DJ. Piezoelectrically-induced switching of 90 degree domains in tetragonal BaTiO3 and PbTiO3 investigated by micro-Raman spectroscopy. J App Phys. 1992;71(9):4481–6.ADSGoogle Scholar
  201. 201.
    Nakamura M, Orihara H, Ishibashi Y, Hara K. Observation of ferroelastic domains in LaNbO4 by micro-Raman spectroscopy. J Phys Soc Jpn. 1990;59:4472–5.ADSGoogle Scholar
  202. 202.
    Gardiner DJ. Practical Raman spectroscopy. New York: Springer; 1989.Google Scholar
  203. 203.
    Drago RS. Physical methods for chemists. Surfside Scientific Publishers; 1992.Google Scholar
  204. 204.
    C A Arguello DL, Porto SPS. First-order raman effect in wurtzite-type crystals. Phys Rev. 1969;181:1351.ADSGoogle Scholar
  205. 205.
    Moerland RJ, Taminiau TH, Novotny L, van Hulst NF, Kuipers L. Reversible polarization control of single photon emission. Nano Lett. 2008;8;606–10.PubMedADSGoogle Scholar
  206. 206.
    Ayars E, Jahncke C, Paesler M, Hallen H. Fundamental differences between micro- and nano-Raman spectroscopy. J Microsc. 2001;202:142.PubMedMathSciNetGoogle Scholar
  207. 207.
    Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 2007;7:2784. (Featured in: Nature Photonics 446:500).PubMedADSGoogle Scholar
  208. 208.
    Stockman MI, Bergman DJ, Anceau C, Brasselet S, Zyss J. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys Rev Lett. 2004;92:057402.PubMedADSGoogle Scholar
  209. 209.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667.ADSGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Catalin C. Neacsu
    • 1
  • Samuel Berweger
    • 1
  • Markus B. Raschke
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations