NanoBiotechnology

, Volume 4, Issue 1–4, pp 18–27

Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis

Article

Abstract

Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous–nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176° were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1 pM, a spot size of 50 μm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200 μm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5 μL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity.

Keywords

wettability macroporous nanoporous MALDI-TOF MS nonwetting properties 

References

  1. 1.
    Shang HM, Wang Y, et al. Thin Solid Films. 2005;472(1–2):37–43.CrossRefADSGoogle Scholar
  2. 2.
    Sun T, Feng L, et al. Acc Chem Res. 2005;38:644.PubMedCrossRefGoogle Scholar
  3. 3.
    Jiang Y, Wang Z, et al. Langmuir. 2005;21(5):1986–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang L, Zhao Y, et al. Angew Chem Int Ed. 2004;43(33):4338–41.CrossRefGoogle Scholar
  5. 5.
    Han JT, Lee DH, et al. JACS. 2004;126(15):4796–7.CrossRefGoogle Scholar
  6. 6.
    Acatay K, Simsek E, et al. Angew Chem Int Ed. 2004;43(39):5210–3.CrossRefGoogle Scholar
  7. 7.
    Tadanaga K, Kitamuro K, et al. J Sol-gel Sci and Technol. 2003;26(1/2/3):705–8.CrossRefGoogle Scholar
  8. 8.
    Lau KKS, Bico J, et al. Nano Let. 2003;3(12):1701–5.CrossRefADSGoogle Scholar
  9. 9.
    Shirtcliffe NJ, McHale G, et al. Langmuir. 2003;19(14):5626–31.CrossRefGoogle Scholar
  10. 10.
    Feng L, Song Y, et al. Angew Chem Int Ed. 2003;42(7):800–2.CrossRefGoogle Scholar
  11. 11.
    Erbil HY, Demirel AL, et al. Science. 2003;299(5611):1377–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Wenzel RN. Ind Eng Chemistry. 1936;28:988–94.CrossRefGoogle Scholar
  13. 13.
    Cassie ABD, Baxter S. Trans Faraday Soc. 1944;40:546–51.CrossRefGoogle Scholar
  14. 14.
    Lafuma A, Quere D. Nat Mat. 2003;2(7):457–60.CrossRefGoogle Scholar
  15. 15.
    Patankar NA. Langmuir. 2004;20(17):7097–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu Y, et al. Chem Vap Deposition. 2002;8:47–50.CrossRefGoogle Scholar
  17. 17.
    Youngblood JP, et al. Macromolecules. 1999;32:6800–6.CrossRefADSGoogle Scholar
  18. 18.
    Chen W, et al. Langmuir. 1999;15:3395–9.CrossRefGoogle Scholar
  19. 19.
    Li Y, Cai W, et al. J Colloid Interface Sci. 2005;287(2):634–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Shiu J-Y, Kuo C-W, et al. Chem Mater. 2004;16(4):561–4.CrossRefADSGoogle Scholar
  21. 21.
    Öner D, McCarthy TJ. Langmuir. 2000;16:7777–82.CrossRefGoogle Scholar
  22. 22.
    Chang-Soo L, et al. Biosens Bioelectron. 2003;18:437–44.CrossRefGoogle Scholar
  23. 23.
    Fuerstner R, Barthlott W, et al. Langmuir. 2005;21(3):956–61.CrossRefGoogle Scholar
  24. 24.
    Ren S, Yang S, et al. Surf Sci. 2003;546(2–3):64–74.CrossRefADSGoogle Scholar
  25. 25.
    Li M, Zhai J, et al. J Phys Chem, B. 2003;107(37):9954–7.CrossRefGoogle Scholar
  26. 26.
    Wu Y, Sugimura H, et al. Chem Vap Depos. 2002;8(2):47–50.CrossRefGoogle Scholar
  27. 27.
    Ressine A, Finnskog D, et al. In: Jensen KF, Han J, et al, editors. Proceedings of microTAS 2005 Conference vol. 1. San Diego: TRF; 2005. p. 256–8.Google Scholar
  28. 28.
    Cao M, Song X, et al. J Phys Chem B. 2006;110(26):13072–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Ressine A, Finnskog D. NanoBiotechnology. 2005;1:93–104.CrossRefGoogle Scholar
  30. 30.
    Schibuichi S, et al. J Phys Chem. 1996;100:19512–7.CrossRefGoogle Scholar
  31. 31.
    Nosonovsky M, Bhushan B. Microsys Technol. 2005;11(7):535–49.CrossRefGoogle Scholar
  32. 32.
    Bico J, Thiele U, et al. Colloids Surf, A. 2002;206(1–3):41–6.CrossRefGoogle Scholar
  33. 33.
    Gao X, Jiang L. Nature. 2004;432(7013):36.PubMedCrossRefADSGoogle Scholar
  34. 34.
    Cullis AG, Canham LT, et al. J Appl Phys. 1997;82(3):909–65.CrossRefADSGoogle Scholar
  35. 35.
    Dehlinger G, et al. Science. 2000;290:2277–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Omrane A, Santesson S, et al. Lab Chip. 2004;4(4):287–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Blossey R, Bosio A. Langmuir. 2002;18:2952–4.CrossRefGoogle Scholar
  38. 38.
    Deegan RD, Bakajin O, et al. Phy Rev E. 2000;62:756–65.CrossRefADSGoogle Scholar
  39. 39.
    Deegan RD, et al. Nature. 1997;389:827–9.CrossRefADSGoogle Scholar
  40. 40.
    Ekstrom S, Ericsson D, et al. Anal Chem. 2001;73(2):214–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Bhattacharya SH, et al. Anal Chem. 2002;74:2228–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Laiko VV, et al. Rapid Commun Mass Spectrom. 2002;16:1737–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Kruse RA, et al. Anal Chem. 2001;73:3639–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Kruse RA, et al. J Mass Spectrom. 2001;36:1317–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Miliotis T, et al. Rapid Commun Mass Spectrom. 2002;16:117–26.PubMedCrossRefGoogle Scholar
  46. 46.
    Schurenberg M, Luebbert C, et al. Anal Chem. 2000;72:33436–42.Google Scholar
  47. 47.
    Ressine A, Auzelyte V, et al. Nucl Instrum Methods Phys Res B. 2006;249:715–8.CrossRefADSGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of Electrical Measurements, Lund Institute of TechnologyLund UniversityLundSweden
  2. 2.Department of Analytical ChemistryLund UniversityLundSweden

Personalised recommendations