, Volume 2, Issue 1–2, pp 29–35 | Cite as

Antibody-based SERS diagnostics of fhit protein without label

  • Paul M. Kasili
  • Musundi B. Wabuyele
  • Tuan Vo-Dinh1
Original Article


Surface-enhanced Raman scattering (SERS) is a particularly promising technique that has the potential to perform highly selective and sensitive in situ measurements of antibody-antigen reactions. This work describes the use of silver (Ag) colloids for immunoassay-based SERS detection of the fragile histidine triad (Fhit) protein. Alterations in Fhit protein expression have been associated with several human cancers, and, thus, the detection of Fhit protein is important because it can potentially be used as a cancer diagnostic biomarker, for both cancer detection and therapy.

Key Words

SERS Fhit colloids biomarker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stokes, D. L. and Vo-Dinh, T. (2000), Sensors and Actuators B-Chem. 69(1–2), 28–36.CrossRefGoogle Scholar
  2. 2.
    Culha, M., Stokes, D., and Vo-Dinh, T. (2003), Exp. Rev. Mol. Diagn., 3(5), 669–675.CrossRefGoogle Scholar
  3. 3.
    Vo-Dinh, T., Yan, F., and Stokes, D. L. (2005), Plasmonicsbased nanostructures for surface-enhanced Raman scattering bioanalysis. In Vo-Dinh, T., (ed.). Protein Nanotechnology, Humana Press, Totowa, NJ, pp. 255–283.CrossRefGoogle Scholar
  4. 4.
    Otto, A., Mrozek, I., Grabhorn, H., and Akemann, W. (1992), J. Phys. Condens, Matter 4, 1143–1212.CrossRefGoogle Scholar
  5. 5.
    Yonzon, C. R., Haynes, C. L., Zhang, X., Walsh, J. T., and Van Duyne, R. P. (2004), Anal. Chem. 76, 78–85.CrossRefGoogle Scholar
  6. 6.
    Xu, S., Ji, X., Xu, W., et al. (2005), J. Biomed. Opt. 10(3), p. 031112.CrossRefGoogle Scholar
  7. 7.
    Askari, M. D., Miller, G. H., and Vo-Dinh, T. (2002), Cancer Detect Prev. 26(5), 331–342.CrossRefGoogle Scholar
  8. 8.
    Huebner, K., Hadaczek, P., Siprashvili, Z., Druck, T., and Croce, C. M. (1997), Biochim. Biophys. Acta. 1332, M65-M70.Google Scholar
  9. 9.
    Sozzi, G., Huebner, K., and Croce, C. M. (1998), Adv. Cancer Res. 74, 141–166.CrossRefGoogle Scholar
  10. 10.
    Huebner, K., Garrison, P. N., Barnes, L. D., and Croce, C. M. (1998), Annu. Rev. Genet. 32, 7–31.CrossRefGoogle Scholar
  11. 11.
    Skotheim, R., Abeler,V., Nesland, J.M. (2003), Neoplasia 5(5), 397–404.Google Scholar
  12. 12.
    Gillian, A., Murphy, D. H., and Alexander, G. M. (2000), Cancer Res. 60, 2342–2344.Google Scholar
  13. 13.
    Moskovits, M., Tay, L.,Yang, J.,, Haslett, T. (2000), Optical Properties of Nanostructured Random Media: SERS and the Single Molecule. In V.M. Shalaev, (ed.). Topics in Applied Physics, p. 215.Google Scholar
  14. 14.
    Cullum, B. M., Mobley, J., Chi, Z. H., Stokes, D. L., Miller, G.H., and Vo-Dinh, T. (2000), Rev. Sci. Instrum. 71(4), 1602–1607.CrossRefGoogle Scholar
  15. 15.
    Lee, P. and Meisel, D. J.(1982), J. Phys. Chem. 86, 3391–3395.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Paul M. Kasili
    • 1
  • Musundi B. Wabuyele
    • 1
  • Tuan Vo-Dinh1
    • 1
    • 2
  1. 1.Fitzpatrick Institute for Photonics, Department of Biomedical Engineering, Department of ChemistryDuke UniversityDurham
  2. 2.Center for Advanced Biomedical PhotonicsOak Ridge National LaboratoryOak Ridge

Personalised recommendations