Somatosensory Evoked Potentials and Neuroprognostication After Cardiac Arrest

  • Brittany Lachance
  • Zhuoran Wang
  • Neeraj Badjatia
  • Xiaofeng JiaEmail author
Review Article


Improved understanding of post-cardiac arrest syndrome and clinical practices such as targeted temperature management have led to improved mortality in this cohort. Attention has now been placed on development of tools to aid in predicting functional outcome in comatose cardiac arrest survivors. Current practice uses a multimodal approach including physical examination, neuroimaging, and electrophysiologic data, with a primary utility in predicting poor functional outcome. These modalities remain confounded by self-fulfilling prophecy and the withdrawal of life-sustaining therapies. To date, a reliable measure to predict good functional outcome has not been established or validated, but the use of quantitative somatosensory evoked potential (SSEP) shows potential for this use. MEDLINE and EMBASE search using words “Cardiac Arrest” and “SSEP,” “Somato sensory evoked potentials,” “qSSEP,” “quantitative SSEP,” “targeted temperature management in cardiac arrest” was conducted. Relevant recent studies on targeted temperature management in cardiac arrest, plus studies on SSEP in cardiac arrest in the setting of hypothermia and without hypothermia, were included. In addition, animal studies evaluating the role of different components of SSEP in cardiac arrest were reviewed. SSEP is a specific indicator of poor outcomes in post-cardiac arrest patients but lacks sensitivity and has not clinically been established to foresee good outcomes. Novel methods of analyzing quantitative SSEP (qSSEP) signals have shown potential to predict good outcomes in animal and human studies. In addition, qSSEP has potential to track cerebral recovery and guide treatment strategy in post-cardiac arrest patients. Lying beyond the current clinical practice of dichotomized absent/present N20 peaks, qSSEP has the potential to emerge as one of the earliest predictors of good outcome in comatose post-cardiac arrest patients. Validation of qSSEP markers in prospective studies to predict good and poor outcomes in the cardiac arrest population in the setting of hypothermia could advance care in cardiac arrest. It has the prospect to guide allocation of health care resources and reduce self-fulfilling prophecy.


Somatosensory evoked potentials SSEP Cardiac arrest Targeted temperature management Prognostication Quantitative SSEP 



The work was partially supported by R01HL118084 and R01NS110387 from NIH (both to X Jia).

Author Contributions

Brittany Bolduc and Zhuoran Wang searched and reviewed the literature, drafted the manuscript, and worked on the revision; Neeraj Badjatia provided critical appraisal; Xiaofeng Jia designed and formulated the review theme, viewed the literature, and revised and finalized the manuscript.

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.PubMedGoogle Scholar
  2. 2.
    Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.PubMedGoogle Scholar
  3. 3.
    Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77(15):1438–45.PubMedGoogle Scholar
  4. 4.
    Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics - 2017 update: a report from the American Heart Association. Circulation. 2017;135:146–603.Google Scholar
  5. 5.
    Mulder M, Gibbs HG, Smith SW, Dhaliwal R, Scott NL, Sprenkle MD, Geocadin RG. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia*. Crit Care Med. 2014;42(12):2493–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Paul M, Bougouin W, Geri G, Dumas F, Champigneulle B, Legriel S, Charpentier J, Mira JP, Sandroni C, Cariou A. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42(7):1128–36.PubMedGoogle Scholar
  7. 7.
    Elmer J, Torres C, Aufderheide TP, Austin MA, Callaway CW, Golan E, Herren H, Jasti J, Kudenchuk PJ, Scales DC, et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–35.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Geocadin RG, Buitrago MM, Torbey MT, Chandra-Strobos N, Williams MA, Kaplan PW. Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest. Neurology. 2006;67(1):105–8.PubMedGoogle Scholar
  9. 9.
    Dragancea I, Horn J, Kuiper M, Friberg H, Ullen S, Wetterslev J, Cranshaw J, Hassager C, Nielsen N, Cronberg T, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 degrees C versus 36 degrees C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–70.PubMedGoogle Scholar
  10. 10.
    Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.Google Scholar
  11. 11.
    Grossestreuer AV, Abella BS, Leary M, Perman SM, Fuchs BD, Kolansky DM, Beylin ME, Gaieski DF. Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(12):1741–6.PubMedGoogle Scholar
  12. 12.
    Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–482.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15(6):597–609.Google Scholar
  14. 14.
    Geocadin RG, Peberdy MA, Lazar RM. Poor survival after cardiac arrest resuscitation: a self-fulfilling prophecy or biologic destiny?*. Crit Care Med. 2012;40(3):979–80.PubMedGoogle Scholar
  15. 15.
    Nolan JP, Ferrando P, Soar J, Benger J, Thomas M, Harrison DA, Perkins GD. Increasing survival after admission to UK critical care units following cardiopulmonary resuscitation. Crit Care. 2016;20(1):219.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Reinikainen M, Oksanen T, Leppanen P, Torppa T, Niskanen M, Kurola J. Mortality in out-of-hospital cardiac arrest patients has decreased in the era of therapeutic hypothermia. Acta Anaesthesiol Scand. 2012;56(1):110–5.PubMedGoogle Scholar
  17. 17.
    Merchant RM, Becker LB, Abella BS, Asch DA, Groeneveld PW. Cost-effectiveness of therapeutic hypothermia after cardiac arrest. Circ Cardiovasc Qual Outcomes. 2009;2(5):421–8.PubMedGoogle Scholar
  18. 18.
    Chan PS, Nallamothu BK, Krumholz HM, Curtis LH, Li Y, Hammill BG, Spertus JA. Readmission rates and long-term hospital costs among survivors of an in-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2014;7(6):889–95.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Karapetkova M, Koenig MA, Jia X. Early prognostication markers in cardiac arrest patients treated with hypothermia. Eur J Neurol. 2016;23(3):476–88.PubMedGoogle Scholar
  20. 20.
    Deng R, Xiong W, Jia X. Electrophysiological monitoring of brain injury and recovery after cardiac arrest. Int J Mol Sci. 2015;16(11):25999–6018.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kamps MJ, Horn J, Oddo M, Fugate JE, Storm C, Cronberg T, Wijman CA, Wu O, Binnekade JM, Hoedemaekers CW. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39(10):1671–82.PubMedGoogle Scholar
  23. 23.
    Amorim E, Rittenberger JC, Zheng JJ, Westover MB, Baldwin ME, Callaway CW, Popescu A. Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury. Resuscitation. 2016;109:121–6.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Bouwes A, Binnekade JM, Kuiper MA, Bosch FH, Zandstra DF, Toornvliet AC, Biemond HS, Kors BM, Koelman JH, Verbeek MM, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.PubMedGoogle Scholar
  25. 25.
    Leithner C, Ploner CJ, Hasper D, Storm C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965–9.PubMedGoogle Scholar
  26. 26.
    Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.PubMedGoogle Scholar
  27. 27.
    Al Thenayan E, Savard M, Sharpe M, Norton L, Young B. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology. 2008;71(19):1535–7.PubMedGoogle Scholar
  28. 28.
    Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, Chen C, Mayer SA, Meschia JF, Bernstein RA, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.PubMedGoogle Scholar
  29. 29.
    Stammet P. Blood biomarkers of hypoxic-ischemic brain injury after cardiac arrest. Semin Neurol. 2017;37(1):75–80.PubMedGoogle Scholar
  30. 30.
    Cronberg T, Rundgren M, Westhall E, Englund E, Siemund R, Rosen I, Widner H, Friberg H. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;77(7):623–30.PubMedGoogle Scholar
  31. 31.
    Fugate JE, Wijdicks EF, Mandrekar J, Claassen DO, Manno EM, White RD, Bell MR, Rabinstein AA. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907–14.PubMedGoogle Scholar
  32. 32.
    Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015;65(19):2104–14.PubMedGoogle Scholar
  33. 33.
    Maciel CB, Morawo AO, Tsao CY, Youn TS, Labar DR, Rubens EO, Greer DM. SSEP in Therapeutic hypothermia era. J Clin Neurophysiol. 2017;34(5):469–75.PubMedGoogle Scholar
  34. 34.
    Sandroni C, Cavallaro F, Callaway CW, D'Arrigo S, Sanna T, Kuiper MA, Biancone M, Della Marca G, Farcomeni A, Nolan JP. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38.PubMedGoogle Scholar
  35. 35.
    Backman S, Westhall E, Dragancea I, Friberg H, Rundgren M, Ullen S, Cronberg T. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128(4):681–8.PubMedGoogle Scholar
  36. 36.
    Westhall E, Rossetti AO, van Rootselaar AF, Wesenberg Kjaer T, Horn J, Ullen S, Friberg H, Nielsen N, Rosen I, Aneman A, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hofmeijer J, Beernink TM, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, van Putten MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.PubMedGoogle Scholar
  39. 39.
    Amorim E, Rittenberger JC, Baldwin ME, Callaway CW, Popescu A, Post Cardiac Arrest Service. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Elmer J, Rittenberger JC, Faro J, Molyneaux BJ, Popescu A, Callaway CW, Baldwin M, Pittsburgh Post-Cardiac Arrest Service. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Niedermeyer E. LDSF: Electroencephalography: basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 127–138.Google Scholar
  42. 42.
    Madhok J, Maybhate A, Xiong W, Koenig MA, Geocadin RG, Jia X, Thakor NV. Quantitative assessment of somatosensory-evoked potentials after cardiac arrest in rats: prognostication of functional outcomes. Crit Care Med. 2010;38(8):1709–17.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Xiong W, Koenig MA, Madhok J, Jia X, Puttgen HA, Thakor NV, Geocadin RG. Evolution of somatosensory evoked potentials after cardiac arrest induced hypoxic-ischemic injury. Resuscitation. 2010;81(7):893–7.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ma Y, Hu Y, Valentin N, Geocadin RG, Thakor NV, Jia X. Time jitter of somatosensory evoked potentials in recovery from hypoxic-ischemic brain injury. J Neurosci Methods. 2011;201(2):355–60.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu D, Bezerianos A, Zhang H, Jia X, Thakor NV. Exploring high-frequency oscillation as a marker of brain ischemia using S-transform. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6099–102.PubMedGoogle Scholar
  46. 46.
    Kang X, Xiong W, Koenig M, Puttgen HA, Jia X, Geocadin R, Thakor N. Long-term assessment of post-cardiac-arrest neurological outcomes with somatosensory evoked potential in rats. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2196–9.PubMedGoogle Scholar
  47. 47.
    Moshayedi P, Elmer J, Habeych M, Thirumala PD, Crammond DJ, Callaway CW, Balzer JR, Rittenberger JC. Evoked potentials improve multimodal prognostication after cardiac arrest. Resuscitation. 2019;139:92–8.PubMedGoogle Scholar
  48. 48.
    Greer DM, Rosenthal ES, Wu O. Neuroprognostication of hypoxic-ischaemic coma in the therapeutic hypothermia era. Nat Rev Neurol. 2014;10(4):190–203.PubMedGoogle Scholar
  49. 49.
    Tiainen M, Kovala TT, Takkunen OS, Roine RO. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med. 2005;33(8):1736–40.PubMedGoogle Scholar
  50. 50.
    Bisschops LL, van Alfen N, Bons S, van der Hoeven JG, Hoedemaekers CW. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation. 2011;82(6):696–701.PubMedGoogle Scholar
  51. 51.
    Bouwes A, Binnekade JM, Zandstra DF, Koelman JH, van Schaik IN, Hijdra A, Horn J. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):1457–61.PubMedGoogle Scholar
  52. 52.
    Arch AE, Chiappa K, Greer DM. False positive absent somatosensory evoked potentials in cardiac arrest with therapeutic hypothermia. Resuscitation. 2014;85(6):e97–98.PubMedGoogle Scholar
  53. 53.
    Rothstein TL. Therapeutic hypothermia and reliability of somatosensory evoked potentials in predicting outcome after cardiopulmonary arrest. Neurocrit Care. 2012;17(1):146–9.PubMedGoogle Scholar
  54. 54.
    Gendo A, Kramer L, Hafner M, Funk GC, Zauner C, Sterz F, Holzer M, Bauer E, Madl C. Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Med. 2001;27(8):1305–11.PubMedGoogle Scholar
  55. 55.
    Zandbergen EG, de Haan RJ, Koelman JH, Hijdra A. Prediction of poor outcome in anoxic-ischemic coma. J Clin Neurophysiol. 2000;17(5):498–501.PubMedGoogle Scholar
  56. 56.
    Cronberg T, Brizzi M, Liedholm LJ, Rosen I, Rubertsson S, Rylander C, Friberg H. Neurological prognostication after cardiac arrest–recommendations from the Swedish Resuscitation Council. Resuscitation. 2013;84(7):867–72.PubMedGoogle Scholar
  57. 57.
    Madl C, Grimm G, Kramer L, Yeganehfar W, Sterz F, Schneider B, Kranz A, Schneeweiss B, Lenz K. Early prediction of individual outcome after cardiopulmonary resuscitation. Lancet. 1993;341(8849):855–8.PubMedGoogle Scholar
  58. 58.
    Wu D, Anastassios B, Xiong W, Madhok J, Jia X, Thakor NV. Study of the origin of short- and long-latency SSEP during recovery from brain ischemia in a rat model. Neurosci Lett. 2010;485(3):157–61.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care. 2005;2(2):159–64.PubMedGoogle Scholar
  60. 60.
    Logi F, Fischer C, Murri L, Mauguiere F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2003;114(9):1615–27.Google Scholar
  61. 61.
    Fischer C, Luaute J, Adeleine P, Morlet D. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology. 2004;63(4):669–73.PubMedGoogle Scholar
  62. 62.
    Prohl J, Rother J, Kluge S, de Heer G, Liepert J, Bodenburg S, Pawlik K, Kreymann G. Prediction of short-term and long-term outcomes after cardiac arrest: a prospective multivariate approach combining biochemical, clinical, electrophysiological, and neuropsychological investigations. Crit Care Med. 2007;35(5):1230–7.PubMedGoogle Scholar
  63. 63.
    Zanatta P, Linassi F, Mazzarolo AP, Arico M, Bosco E, Bendini M, Sorbara C, Ori C, Carron M, Scarpa B. Pain-related Somato Sensory Evoked Potentials: a potential new tool to improve the prognostic prediction of coma after cardiac arrest. Crit Care. 2015;19:403.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Endisch C, Storm C, Ploner CJ, Leithner C. Amplitudes of SSEP and outcome in cardiac arrest survivors: a prospective cohort study. Neurology. 2015;85(20):1752–60.PubMedGoogle Scholar
  65. 65.
    Browning JL, Heizer ML, Baskin DS. Variations in corticomotor and somatosensory evoked potentials: effects of temperature, halothane anesthesia, and arterial partial pressure of CO2. Anesth Analg. 1992;74(5):643–8.PubMedGoogle Scholar
  66. 66.
    Budnick B, McKeown KL, Wiederholt WC. Hypothermia-induced changes in rat short latency somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1981;51(1):19–311.PubMedGoogle Scholar
  67. 67.
    Gollehon D, Kahanovitz N, Happel LT. Temperature effects on feline cortical and spinal evoked potentials. Spine (Phila Pa 1976). 1983;8(5):443–6.Google Scholar
  68. 68.
    Lang M, Welte M, Syben R, Hansen D. Effects of hypothermia on median nerve somatosensory evoked potentials during spontaneous circulation. J Neurosurg Anesthesiol. 2002;14(2):141–5.PubMedGoogle Scholar
  69. 69.
    Madhok J, Wu D, Xiong W, Geocadin RG, Jia X. Hypothermia amplifies somatosensory-evoked potentials in uninjured rats. J Neurosurg Anesthesiol. 2012;24(3):197–202.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Markand ON, Dilley RS, Moorthy SS, Warren C Jr. Monitoring of somatosensory evoked responses during carotid endarterectomy. Arch Neurol. 1984;41(4):375–8.PubMedGoogle Scholar
  71. 71.
    Markand ON, Warren C, Mallik GS, King RD, Brown JW, Mahomed Y. Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1990;77(6):416–24.PubMedGoogle Scholar
  72. 72.
    Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1990;77(6):425–35.PubMedGoogle Scholar
  73. 73.
    Russ W, Sticher J, Scheld H, Hempelmann G. Effects of hypothermia on somatosensory evoked responses in man. Br J Anaesth. 1987;59(12):1484–91.PubMedGoogle Scholar
  74. 74.
    Sebel PS, de Bruijn NP, Neville WK. Effect of hypothermia on median nerve somatosensory evoked potentials. J Cardiothorac Anesth. 1988;2(3):326–9.PubMedGoogle Scholar
  75. 75.
    Bauer E, Funk GC, Gendo A, Kramer L, Zauner C, Sterz F, Schneider B, Madl C. Electrophysiological assessment of the afferent sensory pathway in cardiac arrest survivors. Eur J Clin Invest. 2003;33(4):283–7.PubMedGoogle Scholar
  76. 76.
    Young LM. Multimodel quantitative analysis of somatosensory evoked potentials after cardiac arrest with graded hypothermia. In: IEEE, 2016. p. 1846–9.Google Scholar
  77. 77.
    Greer DM. Mechanisms of injury in hypoxic-ischemic encephalopathy: implications to therapy. Semin Neurol. 2006;26(4):373–9.PubMedGoogle Scholar
  78. 78.
    Oh SH, Park KN, Choi SP, Oh JS, Kim HJ, Youn CS, Kim SH, Chang K, Kim SH. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care. 2019;23(1):224.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Endisch C, Waterstraat G, Storm C, Ploner CJ, Curio G, Leithner C. Cortical somatosensory evoked high-frequency (600Hz) oscillations predict absence of severe hypoxic encephalopathy after resuscitation. Clin Neurophysiol Off J Int Fed Clin Neurophys. 2016;127(7):2561–9.Google Scholar
  80. 80.
    Ozaki I, Hashimoto I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2011;122(10):1908–23.Google Scholar
  81. 81.
    Gotz T, Milde T, Curio G, Debener S, Lehmann T, Leistritz L, Witte OW, Witte H, Haueisen J. Primary somatosensory contextual modulation is encoded by oscillation frequency change. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015;126(9):1769–79.Google Scholar
  82. 82.
    Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(8):1705–19.Google Scholar
  83. 83.
    Leanne Moon Y, Choudhary R, Xiaofeng J. Multimodel quantitative analysis of somatosensory evoked potentials after cardiac arrest with graded hypothermia. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society annual conference; 2016. p. 1846–9Google Scholar
  84. 84.
    Thirumala PD, Udesh R, Muralidharan A, Thiagarajan K, Crammond DJ, Chang YF, Balzer JR. Diagnostic value of somatosensory-evoked potential monitoring during cerebral aneurysm clipping: a systematic review. World Neurosurg. 2016;89:672–80.PubMedGoogle Scholar
  85. 85.
    Lee SY, Lim JY, Kang EK, Han MK, Bae HJ, Paik NJ. Prediction of good functional recovery after stroke based on combined motor and somatosensory evoked potential findings. J Rehabil Med. 2010;42(1):16–20.PubMedGoogle Scholar
  86. 86.
    Lee SY, Kim BR, Han EY. Association between evoked potentials and balance recovery in subacute hemiparetic stroke patients. Ann Rehabil Med. 2015;39(3):451–61.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Nwachuku EL, Balzer JR, Yabes JG, Habeych ME, Crammond DJ, Thirumala PD. Diagnostic value of somatosensory evoked potential changes during carotid endarterectomy: a systematic review and meta-analysis. JAMA Neurol. 2015;72(1):73–80.PubMedGoogle Scholar
  88. 88.
    Thirumala PD, Melachuri SR, Kaur J, Ninaci D, Melachuri MK, Habeych ME, Crammond DJ, Balzer JR. The diagnostic accuracy of somatosensory evoked potentials in evaluating new neurological deficits after posterior cervical fusions. Spine (Phila Pa 1976). 2016;42(7):490–6.Google Scholar
  89. 89.
    Curt A, Dietz V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal cord. 1999;37(3):157–65.PubMedGoogle Scholar
  90. 90.
    Spiess M, Schubert M, Kliesch U, Halder P. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(5):1051–61.Google Scholar
  91. 91.
    Liu H, MacMillian EL, Jutzeler CR, Ljungberg E, MacKay AL, Kolind SH, Madler B, Li DKB, Dvorak MF, Curt A, et al. Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology. 2017;89(6):602–10.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Houlden DA, Li C, Schwartz ML, Katic M. Median nerve somatosensory evoked potentials and the Glasgow Coma Scale as predictors of outcome in comatose patients with head injuries. Neurosurgery. 1990;27(5):701–7 discussion 707–708.PubMedGoogle Scholar
  93. 93.
    Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960–7.PubMedGoogle Scholar
  94. 94.
    Houlden DA, Taylor AB, Feinstein A, Midha R, Bethune AJ, Stewart CP, Schwartz ML. Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med. 2010;38(1):167–74.PubMedGoogle Scholar
  95. 95.
    Zhang R, Yu Y, Manaenko A, Bi H, Zhang N, Zhang L, Zhang T, Ye Z, Sun X. Effect of helium preconditioning on neurological decompression sickness in rats. J Appl Physiol. 2019;126(4):934–40.PubMedGoogle Scholar
  96. 96.
    Pfeifer R, Weitzel S, Gunther A, Berrouschot J, Fischer M, Isenmann S, Figulla HR. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation. 2013;84(10):1375–81.PubMedGoogle Scholar
  97. 97.
    Zandbergen EG, Hijdra A, de Haan RJ, van Dijk JG, de Visser BW, Spaans F, Tavy DL, Koelman JH. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117(7):1529–35.PubMedGoogle Scholar
  98. 98.
    Bender A, Howell K, Frey M, Berlis A, Naumann M, Buheitel G. Bilateral loss of cortical SSEP responses is compatible with good outcome after cardiac arrest. J Neurol. 2012;259(11):2481–3.PubMedGoogle Scholar
  99. 99.
    Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.PubMedGoogle Scholar
  100. 100.
    Zanatta P, Messerotti Benvenuti S, Baldanzi F, Bosco E. Pain-related middle-latency somatosensory evoked potentials in the prognosis of post anoxic coma: a preliminary report. Minerva Anestesiol. 2012;78(7):749–56.PubMedGoogle Scholar
  101. 101.
    Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42(6):1340–7.PubMedGoogle Scholar
  103. 103.
    Madl C, Kramer L, Domanovits H, Woolard RH, Gervais H, Gendo A, Eisenhuber E, Grimm G, Sterz F. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med. 2000;28(3):721–6.PubMedGoogle Scholar
  104. 104.
    Zandbergen EG, Koelman JH, de Haan RJ, Hijdra A. Group PR-S: SSEPs and prognosis in postanoxic coma: only short or also long latency responses? Neurology. 2006;67(4):583–6.PubMedGoogle Scholar
  105. 105.
    Glimmerveen AB, Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, van Putten M, Hofmeijer J. Association between somatosensory evoked potentials and EEG in comatose patients after cardiac arrest. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2019;130(11):2026–31.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Program in Trauma, Department of NeurologyUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations