Treatment of Movement Disorder Emergencies in Autoimmune Encephalitis in the Neurosciences ICU

  • Farwa AliEmail author
  • Eelco F. Wijdicks


Immune response against neuronal and glial cell surface and cytosolic antigens is an important cause of encephalitis. It may be triggered by activation of the immune system in response to an infection (para-infectious), cancer (paraneoplastic), or due to a patient’s tendency toward autoimmunity. Antibodies directed toward neuronal cell surface antigens are directly pathogenic, whereas antibodies with intracellular targets may become pathogenic if the antigen is transiently exposed to the cell surface or via activation of cytotoxic T cells. Immune-mediated encephalitis is well recognized and may require intensive care due to status epilepticus, need for invasive ventilation, or dysautonomia. Patients with immune-mediated encephalitis may become critically ill and display clinically complex and challenging to treat movement disorders in over 80% of the cases (Zhang et al. in Neurocrit Care 29(2):264–272, 2018). Treatment options include immunotherapy and symptomatic agents affecting dopamine or acetylcholine neurotransmission. There has been no prior published guidance for management of these movement disorders for the intensivist. Herein, we discuss the immune-mediated encephalitis most likely to cause critical illness, clinical features and mechanisms of movement disorders and propose a management algorithm.


Autoimmune Encephalitis Movement disorder Dyskinesia Chorea 


Author Contributions

FA and EFW involved in: (1) substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; (2) drafting the article or revising it critically for important intellectual content; (3) final approval of the version to be published.

Source of support

No financial support was used in this project.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

IRB approval was not required for this review article and no patient protected health information was accessed.

Supplementary material

Supplementary material 1 (MP4 4643 kb)

12028_2019_875_MOESM2_ESM.pdf (112 kb)
Supplementary material 2 (PDF 111 kb)


  1. 1.
    Dash D, Ihtisham K, Tripathi M, Tripathi M. Proportion and spectrum of movement disorders in adolescent and adult patients of autoimmune encephalitis of non-neoplastic aetiology. J Clin Neurosci. 2019;59:185–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Cossu G, Colosimo C. Hyperkinetic movement disorder emergencies. Curr Neurol Neurosci Rep. 2017;17(1):6.PubMedCrossRefGoogle Scholar
  3. 3.
    Duan B-C, Weng W-C, Lin K-L, et al. Variations of movement disorders in anti-N-methyl-d-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine. 2016;95(37):e4365.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Baizabal-Carvallo JF, Stocco A, Muscal E, Jankovic J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord. 2013;28(4):543–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Kleinig TJ, Thompson PD, Matar W, et al. The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord. 2008;23(9):1256–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol. 2015;127–128:91–107.PubMedCrossRefGoogle Scholar
  8. 8.
    Comella CL, Leurgans S, Wuu J, Stebbins GT, Chmura T. Dystonia Study Group. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Dale RC, Merheb V, Pillai S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135(Pt 11):3453–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Davies G, Irani SR, Coltart C, et al. Anti-N-methyl-d-aspartate receptor antibodies: a potentially treatable cause of encephalitis in the intensive care unit. Crit Care Med. 2010;38(2):679–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sutter R, Ristic A, Rüegg S, Fuhr P. Myoclonus in the critically ill: diagnosis, management, and clinical impact. Clin Neurophysiol. 2016;127(1):67–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Balint B, Jarius S, Nagel S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82(17):1521–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Panzer JA, Anand R, Dalmau J, Lynch DR. Antibodies to dendritic neuronal surface antigens in opsoclonus myoclonus ataxia syndrome. J Neuroimmunol. 2015;15(286):86–92.CrossRefGoogle Scholar
  15. 15.
    Caviness JN. Treatment of myoclonus. Neurotherapeutics. 2014;11(1):188–200.PubMedCrossRefGoogle Scholar
  16. 16.
    Rogers JP, Pollak TA, Blackman G, David AS. Catatonia and the immune system: a review. Lancet Psychiatry. 2019;6(7):620–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Herken J, Prüss H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;16(8):25.Google Scholar
  18. 18.
    Mikasova L, De Rossi P, Bouchet D, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135(Pt 5):1606–21.CrossRefGoogle Scholar
  19. 19.
    Dalmau J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias Lecture. Neurology. 2016;87(23):2471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Varley JA, Webb AJS, Balint B, et al. The Movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry. 2019;90(6):724–6.PubMedCrossRefGoogle Scholar
  21. 21.
    van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13(5):290–301.PubMedCrossRefGoogle Scholar
  22. 22.
    Lang B, Makuch M, Moloney T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry. 2017;88(4):353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Binks SNM, Klein CJ, Waters P, Pittock SJ, Irani SR. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes. J Neurol Neurosurg Psychiatry. 2018;89(5):526–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Toole O, Lennon VA, Ahlskog JE, et al. Autoimmune chorea in adults. Neurology. 2013;80(12):1133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Iyer RS, Ramakrishnan TCR, Karunakaran Shinto A, Kamaleshwaran KK. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement. Epilepsy Behav Case Rep. 2017;8:47–50.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Striano P. Faciobrachial dystonic attacks: seizures or movement disorder? Ann Neurol. 2011;70(1):179–80 author reply 180.PubMedCrossRefGoogle Scholar
  28. 28.
    Damato V, Balint B, Kienzler A-K, Irani SR. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord. 2018;33(9):1376–89.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–92.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Balint B, Vincent A, Meinck H-M, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Balint B, Bhatia KP. Stiff person syndrome and other immune-mediated movement disorders—new insights. Curr Opin Neurol. 2016;29(4):496–506.PubMedCrossRefGoogle Scholar
  32. 32.
    Werner C, Pauli M, Doose S, et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain. 2016;139(Pt 2):365–79.PubMedCrossRefGoogle Scholar
  33. 33.
    Irani SR. “Moonlighting” surface antigens: a paradigm for autoantibody pathogenicity in neurology? Brain. 2016;139(Pt 2):304–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bien CG, Vincent A, Barnett MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–38.CrossRefGoogle Scholar
  35. 35.
    Cunningham MW, Cox CJ. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta Physiol (Oxf). 2016;216(1):90–100.CrossRefGoogle Scholar
  36. 36.
    Ben-Pazi H, Stoner JA, Cunningham MW. Dopamine receptor autoantibodies correlate with symptoms in Sydenham’s chorea. PLoS ONE. 2013;8(9):e73516.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Church AJ, Dale RC, Giovannoni G. Anti-basal ganglia antibodies: a possible diagnostic utility in idiopathic movement disorders? Arch Dis Child. 2004;89(7):611–4.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Carecchio M, Cantello R, Comi C. Revisiting the molecular mechanism of neurological manifestations in antiphospholipid syndrome: beyond vascular damage. J Immunol Res. 2014;13(2014):239398.Google Scholar
  39. 39.
    Zhang Y, Liu G, Jiang M, Chen W, He Y, Su Y. Clinical characteristics and prognosis of severe anti-N-methyl-d-aspartate receptor encephalitis patients. Neurocrit Care. 2018;29(2):264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Harutyunyan G, Hauer L, Dünser MW, et al. Risk factors for intensive care unit admission in patients with autoimmune encephalitis. Front Immunol. 2017;28(8):835.CrossRefGoogle Scholar
  41. 41.
    Cohen J, Sotoca J, Gandhi S, et al. Autoimmune encephalitis: a costly condition. Neurology. 2019;92(9):e964–e972.PubMedGoogle Scholar
  42. 42.
    Termsarasab P, Frucht SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord. 2017;28(4):10.CrossRefGoogle Scholar
  43. 43.
    McKeon A. The importance of early and sustained treatment of a common autoimmune encephalitis. Lancet Neurol. 2013;12(2):123–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018;141(2):348–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Barnes PJ. How corticosteroids control inflammation: quintiles Prize Lecture 2005. Br J Pharmacol. 2006;148(3):245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology. 2013;154(3):993–1007.PubMedCrossRefGoogle Scholar
  47. 47.
    Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol. 2015;11(2):80–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011;76(3):294–300.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol. 2014;76(2):168–84.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Scheibe F, Prüss H, Mengel AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology. 2017;88(4):366–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee W-J, Lee S-T, Moon J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics. 2016;13(4):824–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Shin Y-W, Lee S-T, Park K-I, et al. Treatment strategies for autoimmune encephalitis. Ther Adv Neurol Disord. 2018;11:1756285617722347.PubMedGoogle Scholar
  53. 53.
    Frucht SJ. Treatment of movement disorder emergencies. Neurotherapeutics. 2014;11(1):208–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Robottom BJ, Weiner WJ, Factor SA. Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol. 2011;68(5):567–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Robottom BJ, Factor SA, Weiner WJ. Movement disorders emergencies. Part 2: hyperkinetic disorders. Arch Neurol. 2011;68(6):719–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Schaefer SM, Rostami R, Greer DM. Movement disorders in the intensive care unit. Semin Neurol. 2016;36(6):607–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Hughes JD, Rabinstein AA. Early diagnosis of paroxysmal sympathetic hyperactivity in the ICU. Neurocrit Care. 2014;20(3):454–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Relja M, Miletić V. When movement disorders hurt: addressing pain in hyperkinetic disorders. Parkinsonism Relat Disord. 2017;44:110–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017;82(1):79–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Mittal MK, Rabinstein AA, Hocker SE, Pittock SJ, Wijdicks EFM, McKeon A. Autoimmune encephalitis in the ICU: analysis of phenotypes, serologic findings, and outcomes. Neurocrit Care. 2016;24(2):240–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu H, Jian M, Liang F, Yue H, Han R. Anti-N-methyl-d-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations. BMC Anesthesiol. 2015;16(15):150.CrossRefGoogle Scholar
  62. 62.
    Solt K, Eger EI, Raines DE. Differential modulation of human N-methyl-d-aspartate receptors by structurally diverse general anesthetics. Anesth Analg. 2006;102(5):1407–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Hollman JH, Brey RH, Bang TJ, Kaufman KR. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. Gait Posture. 2007;26(2):289–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Sonner JM, Zhang Y, Stabernack C, Abaigar W, Xing Y, Laster MJ. GABA(A) receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg. 2003;96(3):706–12 table of contents.PubMedGoogle Scholar
  65. 65.
    Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Kozinn J, Mao L, Arora A, Yang L, Fibuch EE, Wang JQ. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology. 2006;105(6):1182–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Lapébie F-X, Kennel C, Magy L, et al. Potential side effect of propofol and sevoflurane for anesthesia of anti-NMDA-R encephalitis. BMC Anesthesiol. 2014;16(14):5.CrossRefGoogle Scholar
  68. 68.
    Hemphill S, McMenamin L, Bellamy MC, Hopkins PM. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth. 2019;122(4):448–59.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gommers D, Bakker J. Medications for analgesia and sedation in the intensive care unit: an overview. Crit Care. 2008;12(Suppl 3):S4.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC. Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci. 2011;31(44):15727–31.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Seifi A, Kitchen DL. Management of dyskinesia in anti-NMDAR encephalitis with tramadol. Clin Neurol Neurosurg. 2016;147:105–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Potschka H, Friderichs E, Löscher W. Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. Br J Pharmacol. 2000;131(2):203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mohammad SS, Jones H, Hong M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol. 2016;58(4):376–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Jankovic J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin Pharmacother. 2016;17(18):2461–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.PubMedCrossRefGoogle Scholar
  77. 77.
    Peckham AM, Nicewonder JA. VMAT2 inhibitors for tardive dyskinesia-practice implications. J Pharm Pract. 2018;1:897190018756512.Google Scholar
  78. 78.
    Seeberger LC, Hauser RA. Valbenazine for the treatment of tardive dyskinesia. Expert Opin Pharmacother. 2017;18(12):1279–87.PubMedCrossRefGoogle Scholar
  79. 79.
    Jankovic J. An update on new and unique uses of botulinum toxin in movement disorders. Toxicon. 2018;1(147):84–8.CrossRefGoogle Scholar
  80. 80.
    Hallett M. Mechanism of action of botulinum neurotoxin: unexpected consequences. Toxicon. 2018;1(147):73–6.CrossRefGoogle Scholar
  81. 81.
    Puschmann A, Wszolek ZK. Diagnosis and treatment of common forms of tremor. Semin Neurol. 2011;31(1):65–77.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mohammad SS, Dale RC. Principles and approaches to the treatment of immune-mediated movement disorders. Eur J Paediatr Neurol. 2018;22(2):292–300.PubMedCrossRefGoogle Scholar
  83. 83.
    Jankovic J. Treatment of hyperkinetic movement disorders. Lancet Neurol. 2009;8(9):844–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2019

Authors and Affiliations

  1. 1.Department of NeurologyMayo Clinic Rochester MinnesotaRochesterUSA

Personalised recommendations