Neurocritical Care

, Volume 27, Supplement 1, pp 4–28 | Cite as

Emergency Neurological Life Support: Airway, Ventilation, and Sedation

  • Venkatakrishna RajajeeEmail author
  • Becky Riggs
  • David B. Seder


Airway management and ventilation are central to the resuscitation of the neurologically ill. These patients often have evolving processes that threaten the airway and adequate ventilation. Furthermore, intubation, ventilation, and sedative choices directly affect brain perfusion. Therefore, Airway, Ventilation, and Sedation was chosen as an Emergency Neurological Life Support protocol. Topics include airway management, when and how to intubate with special attention to hemodynamics and preservation of cerebral blood flow, mechanical ventilation settings and the use of sedative agents based on the patient’s neurological status.


Airway Ventilation Sedation Neurocritical care Emergency 


  1. 1.
    Davis DP, Dunford JV, Ochs M, Park K, Hoyt DB. The use of quantitative end-tidal capnometry to avoid inadvertent severe hyperventilation in patients with head injury after paramedic rapid sequence intubation. J Trauma. 2004;56(4):808–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Coplin WM, Pierson DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161(5):1530–6. doi: 10.1164/ajrccm.161.5.9905102.PubMedCrossRefGoogle Scholar
  3. 3.
    Walls RMMM. Manual of emergency airway management. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.Google Scholar
  4. 4.
    Apfelbaum JL, Hagberg CA, Caplan RA, Blitt CD, Connis RT, Nickinovich DG, Hagberg CA, Caplan RA, Benumof JL, Berry FA, Blitt CD, Bode RH, Cheney FW, Connis RT, Guidry OF, Nickinovich DG, Ovassapian A, American Society of Anesthesiologists Task Force on Management of the Difficult A. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on management of the difficult airway. Anesthesiology. 2013;118(2):251–70. doi: 10.1097/ALN.0b013e31827773b2.PubMedCrossRefGoogle Scholar
  5. 5.
    Orebaugh SL. Difficult airway management in the emergency department. J Emerg Med. 2002;22(1):31–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Cook TM, Woodall N, Frerk C, Fourth National Audit P. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia. Br J Anaesth. 2011;106(5):617–31. doi: 10.1093/bja/aer058.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook TM, Woodall N, Harper J, Benger J, Fourth National Audit P. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth. 2011;106(5):632–42. doi: 10.1093/bja/aer059.PubMedCrossRefGoogle Scholar
  8. 8.
    Reed MJ, Dunn MJ, McKeown DW. Can an airway assessment score predict difficulty at intubation in the emergency department? Emerg Med J. 2005;22(2):99–102. doi: 10.1136/emj.2003.008771.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mallampati SR, Gatt SP, Gugino LD, Desai SP, Waraksa B, Freiberger D, Liu PL. A clinical sign to predict difficult tracheal intubation: a prospective study. Can Anaesth Soc J. 1985;32(4):429–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Samsoon GL, Young JR. Difficult tracheal intubation: a retrospective study. Anaesthesia. 1987;42(5):487–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Frerk C, Mitchell VS, McNarry AF, Mendonca C, Bhagrath R, Patel A, O’Sullivan EP, Woodall NM, Ahmad I, Difficult Airway Society intubation guidelines working g. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth. 2015;115(6):827–48. doi: 10.1093/bja/aev371.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sample GMP, Vandruff T. Code critical airway teams improves patient safety. Crit Care. 2010;14(Suppl 1):231.CrossRefGoogle Scholar
  13. 13.
    L R Designated Airway Emergency Team May Improve Survival Rates at Hospital Discharge. In: Proceedings from the annual meeting of the American society anesthesiologists. New Orleans, LA, 17–21 October 2009.Google Scholar
  14. 14.
    Cooper RM, O’Sullivan E, Popat M, Behringer E, Hagberg CA. Difficult Airway Society guidelines for the management of tracheal extubation. Anaesthesia. 2013;68(2):217. doi: 10.1111/anae.12139.PubMedCrossRefGoogle Scholar
  15. 15.
    Law JA, Broemling N, Cooper RM, Drolet P, Duggan LV, Griesdale DE, Hung OR, Jones PM, Kovacs G, Massey S, Morris IR, Mullen T, Murphy MF, Preston R, Naik VN, Scott J, Stacey S, Turkstra TP, Wong DT, Canadian Airway Focus G. The difficult airway with recommendations for management–part 1–difficult tracheal intubation encountered in an unconscious/induced patient. Can J Anaesth. 2013;60(11):1089–118. doi: 10.1007/s12630-013-0019-3.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Myatra SN, Ahmed SM, Kundra P, Garg R, Ramkumar V, Patwa A, Shah A, Raveendra US, Shetty SR, Doctor JR, Pawar DK, Ramesh S, Das S, Divatia JV. The All India Difficult Airway Association 2016 guidelines for tracheal intubation in the intensive care unit. Indian J Anaesth. 2016;60(12):922–30. doi: 10.4103/0019-5049.195485.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Jaber S, Amraoui J, Lefrant JY, Arich C, Cohendy R, Landreau L, Calvet Y, Capdevila X, Mahamat A, Eledjam JJ. Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Crit Care Med. 2006;34(9):2355–61. doi: 10.1097/01.CCM.0000233879.58720.87.PubMedCrossRefGoogle Scholar
  18. 18.
    Jaber S, Jung B, Corne P, Sebbane M, Muller L, Chanques G, Verzilli D, Jonquet O, Eledjam JJ, Lefrant JY. An intervention to decrease complications related to endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Intensive Care Med. 2010;36(2):248–55. doi: 10.1007/s00134-009-1717-8.PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson GD, Ross MJ, McKeown DW, Ray DC. Tracheal intubation in the critically ill: a multi-centre national study of practice and complications. Br J Anaesth. 2012;108(5):792–9. doi: 10.1093/bja/aer504.PubMedCrossRefGoogle Scholar
  20. 20.
    Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Chesnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien). 1993;59:121–5.Google Scholar
  22. 22.
    Henzler D, Cooper DJ, Tremayne AB, Rossaint R, Higgins A. Early modifiable factors associated with fatal outcome in patients with severe traumatic brain injury: a case control study. Crit Care Med. 2007;35(4):1027–31. doi: 10.1097/01.CCM.0000259526.45894.08.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones AE, Shapiro NI, Kilgannon JH, Trzeciak S, Emergency Medicine Shock Research Network i. Goal-directed hemodynamic optimization in the post-cardiac arrest syndrome: a systematic review. Resuscitation. 2008;77(1):26–9. doi: 10.1016/j.resuscitation.2007.10.021.PubMedCrossRefGoogle Scholar
  24. 24.
    Kilgannon JH, Roberts BW, Reihl LR, Chansky ME, Jones AE, Dellinger RP, Parrillo JE, Trzeciak S. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6. doi: 10.1016/j.resuscitation.2008.07.019.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Stocchetti N, Furlan A, Volta F. Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma. 1996;40(5):764–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Trzeciak S, Jones AE, Kilgannon JH, Milcarek B, Hunter K, Shapiro NI, Hollenberg SM, Dellinger P, Parrillo JE. Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med. 2009;37(11):2895–903 ; quiz 2904.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt UH, Kumwilaisak K, Bittner E, George E, Hess D. Effects of supervision by attending anesthesiologists on complications of emergency tracheal intubation. Anesthesiology. 2008;109(6):973–7. doi: 10.1097/ALN.0b013e31818ddb90.PubMedCrossRefGoogle Scholar
  28. 28.
    Sawin PD, Todd MM, Traynelis VC, Farrell SB, Nader A, Sato Y, Clausen JD, Goel VK. Cervical spine motion with direct laryngoscopy and orotracheal intubation. An in vivo cinefluoroscopic study of subjects without cervical abnormality. Anesthesiology. 1996;85(1):26–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Collins SR, Blank RS. Fiberoptic intubation: an overview and update. Respir Care. 2014;59(6):865–78. doi: 10.4187/respcare.03012 ; discussion 878–880.PubMedCrossRefGoogle Scholar
  30. 30.
    Baillard C, Fosse JP, Sebbane M, Chanques G, Vincent F, Courouble P, Cohen Y, Eledjam JJ, Adnet F, Jaber S. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174(2):171–7. doi: 10.1164/rccm.200509-1507OC.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaber S, Monnin M, Girard M, Conseil M, Cisse M, Carr J, Mahul M, Delay JM, Belafia F, Chanques G, Molinari N, De Jong A. Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: the single-centre, blinded, randomised controlled OPTINIV trial. Intensive Care Med. 2016;42(12):1877–87. doi: 10.1007/s00134-016-4588-9.PubMedCrossRefGoogle Scholar
  32. 32.
    Miguel-Montanes R, Hajage D, Messika J, Bertrand F, Gaudry S, Rafat C, Labbe V, Dufour N, Jean-Baptiste S, Bedet A, Dreyfuss D, Ricard JD. Use of high-flow nasal cannula oxygen therapy to prevent desaturation during tracheal intubation of intensive care patients with mild-to-moderate hypoxemia. Crit Care Med. 2015;43(3):574–83. doi: 10.1097/CCM.0000000000000743.PubMedCrossRefGoogle Scholar
  33. 33.
    Mosier JM, Hypes CD, Sakles JC. Understanding preoxygenation and apneic oxygenation during intubation in the critically ill. Intensive Care Med. 2017;43(2):226–8. doi: 10.1007/s00134-016-4426-0.PubMedCrossRefGoogle Scholar
  34. 34.
    Vourc’h M, Asfar P, Volteau C, Bachoumas K, Clavieras N, Egreteau PY, Asehnoune K, Mercat A, Reignier J, Jaber S, Prat G, Roquilly A, Brule N, Villers D, Bretonniere C, Guitton C. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: a randomized controlled clinical trial. Intensive Care Med. 2015;41(9):1538–48. doi: 10.1007/s00134-015-3796-z.PubMedCrossRefGoogle Scholar
  35. 35.
    Semler MW, Janz DR, Lentz RJ, Matthews DT, Norman BC, Assad TR, Keriwala RD, Ferrell BA, Noto MJ, McKown AC, Kocurek EG, Warren MA, Huerta LE, Rice TW, Investigators F, Pragmatic Critical Care Research G. Randomized trial of apneic oxygenation during endotracheal intubation of the critically Ill. Am J Respir Crit Care Med. 2016;193(3):273–80. doi: 10.1164/rccm.201507-1294OC.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sakles JC, Mosier JM, Patanwala AE, Arcaris B, Dicken JM. First pass success without hypoxemia is increased with the use of apneic oxygenation during rapid sequence intubation in the emergency department. Acad Emerg Med. 2016;23(6):703–10. doi: 10.1111/acem.12931.PubMedCrossRefGoogle Scholar
  37. 37.
    Sagarin MJ, Barton ED, Chng YM, Walls RM, National Emergency Airway Registry I. Airway management by US and Canadian emergency medicine residents: a multicenter analysis of more than 6000 endotracheal intubation attempts. Ann Emerg Med. 2005;46(4):328–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Li J, Murphy-Lavoie H, Bugas C, Martinez J, Preston C. Complications of emergency intubation with and without paralysis. Am J Emerg Med. 1999;17(2):141–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Sakles JC, Laurin EG, Rantapaa AA, Panacek EA. Airway management in the emergency department: a one-year study of 610 tracheal intubations. Ann Emerg Med. 1998;31(3):325–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Walls RM. Rapid-sequence intubation in head trauma. Ann Emerg Med. 1993;22(6):1008–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Bedford RF, Persing JA, Pobereskin L, Butler A. Lidocaine or thiopental for rapid control of intracranial hypertension? Anesth Analg. 1980;59(6):435–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC, Brain Trauma F. Guidelines for prehospital management of traumatic brain injury. J Neurotrauma. 2002;19(1):111–74. doi: 10.1089/089771502753460286.PubMedCrossRefGoogle Scholar
  43. 43.
    Weingart S. Additional thoughts on the controversy of lidocaine administration before rapid sequence intubation in patients with traumatic brain injuries. Ann Emerg Med. 2007;50(3):353. doi: 10.1016/j.annemergmed.2007.02.032.PubMedCrossRefGoogle Scholar
  44. 44.
    Donegan MF, Bedford RF. Intravenously administered lidocaine prevents intracranial hypertension during endotracheal suctioning. Anesthesiology. 1980;52(6):516–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Salhi B, Stettner E. In defense of the use of lidocaine in rapid sequence intubation. Ann Emerg Med. 2007;49(1):84–6. doi: 10.1016/j.annemergmed.2006.09.003.PubMedCrossRefGoogle Scholar
  46. 46.
    Reynolds SF, Heffner J. Airway management of the critically ill patient: rapid-sequence intubation. Chest. 2005;127(4):1397–412. doi: 10.1378/chest.127.4.1397.PubMedGoogle Scholar
  47. 47.
    Oddo M, Bosel J, Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care. 2014;21(Suppl 2):S103–20. doi: 10.1007/s12028-014-0024-6.PubMedCrossRefGoogle Scholar
  48. 48.
    Prough DS, Lang J. Therapy of patients with head injuries: key parameters for management. J Trauma. 1997;42(5 Suppl):S10–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56(4):503–9. doi: 10.4187/respcare.01175.PubMedCrossRefGoogle Scholar
  50. 50.
    Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischaemic stroke treatment: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2015;36(3):525–9. doi: 10.3174/ajnr.A4159.PubMedCrossRefGoogle Scholar
  51. 51.
    Schonenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, Ringleb PA, Kieser M, Mohlenbruch MA, Bosel J. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischaemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. JAMA. 2016;316(19):1986–96. doi: 10.1001/jama.2016.16623.PubMedCrossRefGoogle Scholar
  52. 52.
    Abou-Chebl A, Lin R, Hussain MS, Jovin TG, Levy EI, Liebeskind DS, Yoo AJ, Hsu DP, Rymer MM, Tayal AH, Zaidat OO, Natarajan SK, Nogueira RG, Nanda A, Tian M, Hao Q, Kalia JS, Nguyen TN, Chen M, Gupta R. Conscious sedation versus general anesthesia during endovascular therapy for acute anterior circulation stroke: preliminary results from a retrospective, multicenter study. Stroke. 2010;41(6):1175–9. doi: 10.1161/STROKEAHA.109.574129.PubMedCrossRefGoogle Scholar
  53. 53.
    Dhakal LP, Diaz-Gomez JL, Freeman WD. Role of anesthesia for endovascular treatment of ischaemic stroke: do we need neurophysiological monitoring? Stroke. 2015;46(6):1748–54. doi: 10.1161/STROKEAHA.115.008223.PubMedCrossRefGoogle Scholar
  54. 54.
    Seneviratne J, Mandrekar J, Wijdicks EF, Rabinstein AA. Noninvasive ventilation in myasthenic crisis. Arch Neurol. 2008;65(1):54–8. doi: 10.1001/archneurol.2007.1.PubMedCrossRefGoogle Scholar
  55. 55.
    Flandreau G, Bourdin G, Leray V, Bayle F, Wallet F, Delannoy B, Durante G, Vincent B, Barbier J, Burle JF, Passant S, Richard JC, Guerin C. Management and long-term outcome of patients with chronic neuromuscular disease admitted to the intensive care unit for acute respiratory failure: a single-center retrospective study. Respir Care. 2011;56(7):953–60. doi: 10.4187/respcare.00862.PubMedCrossRefGoogle Scholar
  56. 56.
    Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G. Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration. 2006;73(6):791–8. doi: 10.1159/000090777.PubMedCrossRefGoogle Scholar
  57. 57.
    Abel M, Eisenkraft JB. Anesthetic implications of myasthenia gravis. Mt Sinai J Med. 2002;69(1–2):31–7.PubMedGoogle Scholar
  58. 58.
    Austin N, Krishnamoorthy V, Dagal A. Airway management in cervical spine injury. Int J Crit Illn Inj Sci. 2014;4(1):50–6. doi: 10.4103/2229-5151.128013.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hauswald M, Sklar DP, Tandberg D, Garcia JF. Cervical spine movement during airway management: cinefluoroscopic appraisal in human cadavers. Am J Emerg Med. 1991;9(6):535–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosenblatt WH, Wagner PJ, Ovassapian A, Kain ZN. Practice patterns in managing the difficult airway by anesthesiologists in the United States. Anesth Analg. 1998;87(1):153–7.PubMedGoogle Scholar
  61. 61.
    Malcharek MJ, Rogos B, Watzlawek S, Sorge O, Sablotzki A, Gille J, Larson CP Jr. Awake fiberoptic intubation and self-positioning in patients at risk of secondary cervical injury: a pilot study. J Neurosurg Anesthesiol. 2012;24(3):217–21. doi: 10.1097/ANA.0b013e31824da7e5.PubMedCrossRefGoogle Scholar
  62. 62.
    Yeganeh N, Roshani B, Azizi B, Almasi A. Target-controlled infusion of remifentanil to provide analgesia for awake nasotracheal fiberoptic intubations in cervical trauma patients. J Trauma. 2010;69(5):1185–90. doi: 10.1097/TA.0b013e3181cb4434.PubMedCrossRefGoogle Scholar
  63. 63.
    Avitsian R, Lin J, Lotto M, Ebrahim Z. Dexmedetomidine and awake fiberoptic intubation for possible cervical spine myelopathy: a clinical series. J Neurosurg Anesthesiol. 2005;17(2):97–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Rice MJ, Mancuso AA, Gibbs C, Morey TE, Gravenstein N, Deitte LA. Cricoid pressure results in compression of the postcricoid hypopharynx: the esophageal position is irrelevant. Anesth Analg. 2009;109(5):1546–52. doi: 10.1213/ane.0b013e3181b05404.PubMedCrossRefGoogle Scholar
  65. 65.
    Ellis DY, Harris T, Zideman D. Cricoid pressure in emergency department rapid sequence tracheal intubations: a risk-benefit analysis. Ann Emerg Med. 2007;50(6):653–65. doi: 10.1016/j.annemergmed.2007.05.006.PubMedCrossRefGoogle Scholar
  66. 66.
    Nolan JP, Wilson ME. Orotracheal intubation in patients with potential cervical spine injuries. An indication for the gum elastic bougie. Anaesthesia. 1993;48(7):630–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Kill C, Risse J, Wallot P, Seidl P, Steinfeldt T, Wulf H. Videolaryngoscopy with glidescope reduces cervical spine movement in patients with unsecured cervical spine. J Emerg Med. 2013;44(4):750–6. doi: 10.1016/j.jemermed.2012.07.080.PubMedCrossRefGoogle Scholar
  68. 68.
    Robitaille A, Williams SR, Tremblay MH, Guilbert F, Theriault M, Drolet P. Cervical spine motion during tracheal intubation with manual in-line stabilization: direct laryngoscopy versus GlideScope videolaryngoscopy. Anesth Analg. 2008;106(3):935–41. doi: 10.1213/ane.0b013e318161769e.PubMedCrossRefGoogle Scholar
  69. 69.
    Turkstra TP, Craen RA, Pelz DM, Gelb AW. Cervical spine motion: a fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg. 2005;101(3):910–5. doi: 10.1213/01.ane.0000166975.38649.27.PubMedCrossRefGoogle Scholar
  70. 70.
    Brown CA III, Bair AE, Pallin DJ, Laurin EG, Walls RM, National Emergency Airway Registry I. Improved glottic exposure with the Video Macintosh Laryngoscope in adult emergency department tracheal intubations. Ann Emerg Med. 2010;56(2):83–8. doi: 10.1016/j.annemergmed.2010.01.033.PubMedCrossRefGoogle Scholar
  71. 71.
    Noppens RR, Mobus S, Heid F, Schmidtmann I, Werner C, Piepho T. Evaluation of the McGrath Series 5 videolaryngoscope after failed direct laryngoscopy. Anaesthesia. 2010;65(7):716–20. doi: 10.1111/j.1365-2044.2010.06388.x.PubMedCrossRefGoogle Scholar
  72. 72.
    Piepho T, Fortmueller K, Heid FM, Schmidtmann I, Werner C, Noppens RR. Performance of the C-MAC video laryngoscope in patients after a limited glottic view using Macintosh laryngoscopy. Anaesthesia. 2011;66(12):1101–5. doi: 10.1111/j.1365-2044.2011.06872.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Griesdale DE, Liu D, McKinney J, Choi PT. Glidescope(R) video-laryngoscopy versus direct laryngoscopy for endotracheal intubation: a systematic review and meta-analysis. Can J Anaesth. 2012;59(1):41–52. doi: 10.1007/s12630-011-9620-5.PubMedCrossRefGoogle Scholar
  74. 74.
    Su YC, Chen CC, Lee YK, Lee JY, Lin KJ. Comparison of video laryngoscopes with direct laryngoscopy for tracheal intubation: a meta-analysis of randomised trials. Eur J Anaesthesiol. 2011;28(11):788–95. doi: 10.1097/EJA.0b013e32834a34f3.PubMedCrossRefGoogle Scholar
  75. 75.
    De Jong A, Molinari N, Conseil M, Coisel Y, Pouzeratte Y, Belafia F, Jung B, Chanques G, Jaber S. Video laryngoscopy versus direct laryngoscopy for orotracheal intubation in the intensive care unit: a systematic review and meta-analysis. Intensive Care Med. 2014;40(5):629–39. doi: 10.1007/s00134-014-3236-5.PubMedGoogle Scholar
  76. 76.
    Bergen JM, Smith DC. A review of etomidate for rapid sequence intubation in the emergency department. J Emerg Med. 1997;15(2):221–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Moss E, Powell D, Gibson RM, McDowall DG. Effect of etomidate on intracranial pressure and cerebral perfusion pressure. Br J Anaesth. 1979;51(4):347–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Kox WJ, von Heymann C, Heinze J, Prichep LS, John ER, Rundshagen I. Electroencephalographic mapping during routine clinical practice: cortical arousal during tracheal intubation? Anesth Analg. 2006;102(3):825–31. doi: 10.1213/01.ane.0000197776.26307.fa.PubMedCrossRefGoogle Scholar
  79. 79.
    Reddy RV, Moorthy SS, Dierdorf SF, Deitch RD Jr., Link L. Excitatory effects and electroencephalographic correlation of etomidate, thiopental, methohexital, and propofol. Anesth Analg. 1993;77(5):1008–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Langsjo JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V, Hinkka S, Aantaa R, Sipila H, Viljanen T, Parkkola R, Scheinin H. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology. 2005;103(2):258–68.PubMedCrossRefGoogle Scholar
  81. 81.
    Bourgoin A, Albanese J, Wereszczynski N, Charbit M, Vialet R, Martin C. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med. 2003;31(3):711–7. doi: 10.1097/01.CCM.0000044505.24727.16.PubMedCrossRefGoogle Scholar
  82. 82.
    Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4(1):40–6. doi: 10.3171/2009.1.PEDS08319.PubMedCrossRefGoogle Scholar
  83. 83.
    Himmelseher S, Durieux ME. Revising a dogma: ketamine for patients with neurological injury? Anesth Analg. 2005;101(2):524–34. doi: 10.1213/01.ANE.0000160585.43587.5B.PubMedCrossRefGoogle Scholar
  84. 84.
    Albanese J, Arnaud S, Rey M, Thomachot L, Alliez B, Martin C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87(6):1328–34.PubMedCrossRefGoogle Scholar
  85. 85.
    Kovarik WD, Mayberg TS, Lam AM, Mathisen TL, Winn HR. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesth Analg. 1994;78(3):469–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.PubMedCrossRefGoogle Scholar
  87. 87.
    Patanwala AE, Erstad BL, Roe DJ, Sakles JC. Succinylcholine is associated with increased mortality when used for rapid sequence intubation of severely brain injured patients in the emergency department. Pharmacotherapy. 2016;36(1):57–63. doi: 10.1002/phar.1683.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee C, Jahr JS, Candiotti KA, Warriner B, Zornow MH, Naguib M. Reversal of profound neuromuscular block by sugammadex administered three minutes after rocuronium: a comparison with spontaneous recovery from succinylcholine. Anesthesiology. 2009;110(5):1020–5. doi: 10.1097/ALN.0b013e31819dabb0.PubMedCrossRefGoogle Scholar
  89. 89.
    Sorensen MK, Bretlau C, Gatke MR, Sorensen AM, Rasmussen LS. Rapid sequence induction and intubation with rocuronium-sugammadex compared with succinylcholine: a randomized trial. Br J Anaesth. 2012;108(4):682–9. doi: 10.1093/bja/aer503.PubMedCrossRefGoogle Scholar
  90. 90.
    Collins JS, Lemmens HJ, Brodsky JB, Brock-Utne JG, Levitan RM. Laryngoscopy and morbid obesity: a comparison of the “sniff” and “ramped” positions. Obes Surg. 2004;14(9):1171–5. doi: 10.1381/0960892042386869.PubMedCrossRefGoogle Scholar
  91. 91.
    Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;11:CD011136. doi: 10.1002/14651858.CD011136.pub2.PubMedGoogle Scholar
  92. 92.
    Janz DR, Semler MW, Lentz RJ, Matthews DT, Assad TR, Norman BC, Keriwala RD, Ferrell BA, Noto MJ, Shaver CM, Richmond BW, Zinggeler Berg J, Rice TW, Facilitating Endotrachea LibLt, apneic Oxygenation Within the ICUI, the Pragmatic Critical Care Research G. Randomized trial of video laryngoscopy for endotracheal intubation of critically ill adults. Crit Care Med. 2016;44(11):1980–7. doi: 10.1097/CCM.0000000000001841.PubMedCrossRefGoogle Scholar
  93. 93.
    Griesdale DE, Chau A, Isac G, Ayas N, Foster D, Irwin C, Choi P, Canadian Critical Care Trials G. Video-laryngoscopy versus direct laryngoscopy in critically ill patients: a pilot randomized trial. Can J Anaesth. 2012;59(11):1032–9. doi: 10.1007/s12630-012-9775-8.PubMedCrossRefGoogle Scholar
  94. 94.
    Silverberg MJ, Li N, Acquah SO, Kory PD. Comparison of video laryngoscopy versus direct laryngoscopy during urgent endotracheal intubation: a randomized controlled trial. Crit Care Med. 2015;43(3):636–41. doi: 10.1097/CCM.0000000000000751.PubMedCrossRefGoogle Scholar
  95. 95.
    Lascarrou JB, Boisrame-Helms J, Bailly A, Le Thuaut A, Kamel T, Mercier E, Ricard JD, Lemiale V, Colin G, Mira JP, Meziani F, Messika J, Dequin PF, Boulain T, Azoulay E, Champigneulle B, Reignier J, Clinical Research in Intensive C, Sepsis G. Video laryngoscopy vs direct laryngoscopy on successful first-pass orotracheal intubation among ICU patients: a randomized clinical trial. JAMA. 2017;317(5):483–93. doi: 10.1001/jama.2016.20603.PubMedCrossRefGoogle Scholar
  96. 96.
    Sakles JC, Kalin L. The effect of stylet choice on the success rate of intubation using the GlideScope video laryngoscope in the emergency department. Acad Emerg Med. 2012;19(2):235–8. doi: 10.1111/j.1553-2712.2011.01271.x.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Cormack RS, Lehane J. Difficult tracheal intubation in obstetrics. Anaesthesia. 1984;39(11):1105–11.PubMedCrossRefGoogle Scholar
  98. 98.
    Yentis SM, Lee DJ. Evaluation of an improved scoring system for the grading of direct laryngoscopy. Anaesthesia. 1998;53(11):1041–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Murray MJ, Vermeulen MJ, Morrison LJ, Waite T. Evaluation of prehospital insertion of the laryngeal mask airway by primary care paramedics with only classroom mannequin training. CJEM. 2002;4(5):338–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Bosch J, de Nooij J, de Visser M, Cannegieter SC, Terpstra NJ, Heringhaus C, Burggraaf J. Prehospital use in emergency patients of a laryngeal mask airway by ambulance paramedics is a safe and effective alternative for endotracheal intubation. Emerg Med J. 2014;31(9):750–3. doi: 10.1136/emermed-2012-202283.PubMedCrossRefGoogle Scholar
  101. 101.
    Cook TM, Kelly FE. Time to abandon the ‘vintage’ laryngeal mask airway and adopt second-generation supraglottic airway devices as first choice. Br J Anaesth. 2015;115(4):497–9. doi: 10.1093/bja/aev156.PubMedCrossRefGoogle Scholar
  102. 102.
    McConnell RA, Kerlin MP, Schweickert WD, Ahmad F, Patel MS, Fuchs BD. Using a post-intubation checklist and time out to expedite mechanical ventilation monitoring: observational study of a quality improvement intervention. Respir Care. 2016;61(7):902–12. doi: 10.4187/respcare.04191.PubMedCrossRefGoogle Scholar
  103. 103.
    Dumont TM, Visioni AJ, Rughani AI, Tranmer BI, Crookes B. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma. 2010;27(7):1233–41. doi: 10.1089/neu.2009.1216.PubMedCrossRefGoogle Scholar
  104. 104.
    Davis DP, Idris AH, Sise MJ, Kennedy F, Eastman AB, Velky T, Vilke GM, Hoyt DB. Early ventilation and outcome in patients with moderate to severe traumatic brain injury. Crit Care Med. 2006;34(4):1202–8. doi: 10.1097/01.CCM.0000208359.74623.1C.PubMedCrossRefGoogle Scholar
  105. 105.
    Davis DP, Stern J, Sise MJ, Hoyt DB. A follow-up analysis of factors associated with head-injury mortality after paramedic rapid sequence intubation. J Trauma. 2005;59(2):486–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Rangel-Castilla L, Lara LR, Gopinath S, Swank PR, Valadka A, Robertson C. Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury. J Neurotrauma. 2010;27(10):1853–63. doi: 10.1089/neu.2010.1339.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Koenig MA, Bryan M, Lewin JL III, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70(13):1023–9. doi: 10.1212/01.wnl.0000304042.05557.60.PubMedCrossRefGoogle Scholar
  108. 108.
    Qureshi AI, Geocadin RG, Suarez JI, Ulatowski JA. Long-term outcome after medical reversal of transtentorial herniation in patients with supratentorial mass lesions. Crit Care Med. 2000;28(5):1556–64.PubMedCrossRefGoogle Scholar
  109. 109.
    Oertel M, Kelly DF, Lee JH, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Hovda DA, Martin NA. Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg. 2002;97(5):1045–53. doi: 10.3171/jns.2002.97.5.1045.PubMedCrossRefGoogle Scholar
  110. 110.
    Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9. doi: 10.3171/jns.1991.75.5.0731.PubMedCrossRefGoogle Scholar
  111. 111.
    Stocchetti N, Maas AI, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;127(5):1812–27. doi: 10.1378/chest.127.5.1812.PubMedCrossRefGoogle Scholar
  112. 112.
    Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, Aigbirhio F, Chatfield DA, Williams GB, Boniface S, Carpenter TA, Clark JC, Pickard JD, Menon DK. Hyperventilation following head injury: effect on ischaemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78. doi: 10.1097/01.CCM.0000254066.37187.88.PubMedCrossRefGoogle Scholar
  113. 113.
    Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, Downey SP, Williams G, Chatfield D, Matthews JC, Gupta AK, Carpenter TA, Clark JC, Pickard JD, Menon DK. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30(9):1950–9. doi: 10.1097/01.CCM.0000026331.91456.9A.PubMedCrossRefGoogle Scholar
  114. 114.
    Diringer MN, Videen TO, Yundt K, Zazulia AR, Aiyagari V, Dacey RG Jr., Grubb RL, Powers WJ. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg. 2002;96(1):103–8. doi: 10.3171/jns.2002.96.1.0103.PubMedCrossRefGoogle Scholar
  115. 115.
    Carrera E, Schmidt JM, Fernandez L, Kurtz P, Merkow M, Stuart M, Lee K, Claassen J, Sander Connolly E, Mayer SA, Badjatia N. Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury. J Neurol Neurosurg Psychiatry. 2010;81(7):793–7. doi: 10.1136/jnnp.2009.174425.PubMedCrossRefGoogle Scholar
  116. 116.
    Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, Parrillo JE, Trzeciak S, Emergency Medicine Shock Research Network I. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71. doi: 10.1001/jama.2010.707.PubMedCrossRefGoogle Scholar
  117. 117.
    Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C, Rosenthal RE. Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke. 2006;37(12):3008–13. doi: 10.1161/01.STR.0000248455.73785.b1.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Brucken A, Kaab AB, Kottmann K, Rossaint R, Nolte KW, Weis J, Fries M. Reducing the duration of 100% oxygen ventilation in the early reperfusion period after cardiopulmonary resuscitation decreases striatal brain damage. Resuscitation. 2010;81(12):1698–703. doi: 10.1016/j.resuscitation.2010.06.027.PubMedCrossRefGoogle Scholar
  119. 119.
    Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, Shapiro NI, Trzeciak S, Emergency Medicine Shock Research Network I. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–22. doi: 10.1161/CIRCULATIONAHA.110.001016.PubMedCrossRefGoogle Scholar
  120. 120.
    Bellomo R, Bailey M, Eastwood GM, Nichol A, Pilcher D, Hart GK, Reade MC, Egi M, Cooper DJ, Study of Oxygen in Critical Care G. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15(2):R90. doi: 10.1186/cc10090.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang CH, Chang WT, Huang CH, Tsai MS, Yu PH, Wang AY, Chen NC, Chen WJ. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation. 2014;85(9):1142–8. doi: 10.1016/j.resuscitation.2014.05.021.PubMedCrossRefGoogle Scholar
  122. 122.
    Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, Rosario-Rivera BL, Guyette FX, Rittenberger JC, Dezfulian C, Pittsburgh Post-Cardiac Arrest S. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41(1):49–57. doi: 10.1007/s00134-014-3555-6.PubMedCrossRefGoogle Scholar
  123. 123.
    Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL, Kronick SL, American Heart A. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S768–86. doi: 10.1161/CIRCULATIONAHA.110.971002.PubMedCrossRefGoogle Scholar
  124. 124.
    CC M Pulse oximetry in adults. Accessed 13 Mar 2017.
  125. 125.
    Dyer BA, White WA Jr., Lee D, Elkins L, Slayton DJ. The relationship between arterial carbon dioxide tension and end-tidal carbon dioxide tension in intubated adults with traumatic brain injuries who required emergency craniotomies. Crit Care Nurs Q. 2013;36(3):310–5. doi: 10.1097/CNQ.0b013e318294ea8f.PubMedCrossRefGoogle Scholar
  126. 126.
    Helm M, Schuster R, Hauke J, Lampl L. Tight control of prehospital ventilation by capnography in major trauma victims. Br J Anaesth. 2003;90(3):327–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Hardman JG, Aitkenhead AR. Estimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis. Anesth Analg. 2003;97(6):1846–51.PubMedCrossRefGoogle Scholar
  128. 128.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342(18):1301–8. doi: 10.1056/NEJM200005043421801.
  129. 129.
    Petridis AK, Doukas A, Kienke S, Maslehaty H, Mahvash M, Barth H, Mehdorn HM. The effect of lung-protective permissive hypercapnia in intracerebral pressure in patients with subarachnoid haemorrhage and ARDS. A retrospective study. Acta Neurochir (Wien). 2010;152(12):2143–5. doi: 10.1007/s00701-010-0761-z.CrossRefGoogle Scholar
  130. 130.
    Bennett SS, Graffagnino C, Borel CO, James ML. Use of high frequency oscillatory ventilation (HFOV) in neurocritical care patients. Neurocrit Care. 2007;7(3):221–6. doi: 10.1007/s12028-007-0084-y.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Roth C, Ferbert A, Deinsberger W, Kleffmann J, Kastner S, Godau J, Schuler M, Tryba M, Gehling M. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21(2):186–91. doi: 10.1007/s12028-014-0004-x.PubMedCrossRefGoogle Scholar
  132. 132.
    Reinprecht A, Greher M, Wolfsberger S, Dietrich W, Illievich UM, Gruber A. Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med. 2003;31(6):1831–8. doi: 10.1097/01.CCM.0000063453.93855.0A.PubMedCrossRefGoogle Scholar
  133. 133.
    Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, Proietti R, Antonelli M. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58(3):571–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, Quintel M, Vajkoczy P. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33(10):2367–72.PubMedCrossRefGoogle Scholar
  135. 135.
    Schramm P, Closhen D, Felkel M, Berres M, Klein KU, David M, Werner C, Engelhard K. Influence of PEEP on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome. J Neurosurg Anesthesiol. 2013;25(2):162–7. doi: 10.1097/ANA.0b013e31827c2f46.PubMedCrossRefGoogle Scholar
  136. 136.
    Marik PE, Young A, Sibole S, Levitov A. The effect of APRV ventilation on ICP and cerebral hemodynamics. Neurocrit Care. 2012;17(2):219–23. doi: 10.1007/s12028-012-9739-4.PubMedCrossRefGoogle Scholar
  137. 137.
    Koutsoukou A, Perraki H, Raftopoulou A, Koulouris N, Sotiropoulou C, Kotanidou A, Orfanos S, Roussos C. Respiratory mechanics in brain-damaged patients. Intensive Care Med. 2006;32(12):1947–54. doi: 10.1007/s00134-006-0406-0.PubMedCrossRefGoogle Scholar
  138. 138.
    Riker RR, Fugate JE, Participants in the International Multi-disciplinary Consensus Conference on Multimodality M. Clinical monitoring scales in acute brain injury: assessment of coma, pain, agitation, and delirium. Neurocrit Care. 2014;21(Suppl 2):S27–37. doi: 10.1007/s12028-014-0025-5.PubMedCrossRefGoogle Scholar
  139. 139.
    Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, Davidson JE, Devlin JW, Kress JP, Joffe AM, Coursin DB, Herr DL, Tung A, Robinson BR, Fontaine DK, Ramsay MA, Riker RR, Sessler CN, Pun B, Skrobik Y, Jaeschke R, American College of Critical Care M. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306. doi: 10.1097/CCM.0b013e3182783b72.PubMedCrossRefGoogle Scholar
  140. 140.
    Riker RR, Fraser GL. Altering intensive care sedation paradigms to improve patient outcomes. Anesthesiol Clin. 2011;29(4):663–74. doi: 10.1016/j.anclin.2011.09.006.PubMedCrossRefGoogle Scholar
  141. 141.
    Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, Chalfin DB, Masica MF, Bjerke HS, Coplin WM, Crippen DW, Fuchs BD, Kelleher RM, Marik PE, Nasraway SA Jr., Murray MJ, Peruzzi WT, Lumb PD, Task Force of the American College of Critical Care Medicine of the Society of Critical Care Medicine ASoH-SPACoCP. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30(1):119–41.PubMedCrossRefGoogle Scholar
  142. 142.
    Fraser GL, Riker RR, Prato BS, Wilkins ML. The frequency and cost of patient-initiated device removal in the ICU. Pharmacotherapy. 2001;21(1):1–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care. 2009;11(2):135–42. doi: 10.1007/s12028-009-9255-3.PubMedCrossRefGoogle Scholar
  144. 144.
    Brain Trauma F, American Association of Neurological S, Congress of Neurological S, Joint Section on N, Critical Care AC, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44. doi: 10.1089/neu.2007.9990.Google Scholar
  145. 145.
    Citerio G, Cormio M. Sedation in neurointensive care: advances in understanding and practice. Curr Opin Crit Care. 2003;9(2):120–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Brook AD, Ahrens TS, Schaiff R, Prentice D, Sherman G, Shannon W, Kollef MH. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999;27(12):2609–15.PubMedCrossRefGoogle Scholar
  147. 147.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7. doi: 10.1056/NEJM200005183422002.PubMedCrossRefGoogle Scholar
  148. 148.
    Treggiari MM, Romand JA, Yanez ND, Deem SA, Goldberg J, Hudson L, Heidegger CP, Weiss NS. Randomized trial of light versus deep sedation on mental health after critical illness. Crit Care Med. 2009;37(9):2527–34. doi: 10.1097/CCM.0b013e3181a5689f.PubMedCrossRefGoogle Scholar
  149. 149.
    Mehta S, Burry L, Martinez-Motta JC, Stewart TE, Hallett D, McDonald E, Clarke F, Macdonald R, Granton J, Matte A, Wong C, Suri A, Cook DJ, Canadian Critical Care Trials G. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial. Crit Care Med. 2008;36(7):2092–9. doi: 10.1097/CCM.0b013e31817bff85.PubMedCrossRefGoogle Scholar
  150. 150.
    Jones C, Backman C, Capuzzo M, Flaatten H, Rylander C, Griffiths RD. Precipitants of post-traumatic stress disorder following intensive care: a hypothesis generating study of diversity in care. Intensive Care Med. 2007;33(6):978–85. doi: 10.1007/s00134-007-0600-8.PubMedCrossRefGoogle Scholar
  151. 151.
    Hopkins RO, Jackson JC. Long-term neurocognitive function after critical illness. Chest. 2006;130(3):869–78. doi: 10.1378/chest.130.3.869.PubMedCrossRefGoogle Scholar
  152. 152.
    Al MJ, Hakkaart L, Tan SS, Bakker J. Cost-consequence analysis of remifentanil-based analgo-sedation vs. conventional analgesia and sedation for patients on mechanical ventilation in the Netherlands. Crit Care. 2010;14(6):R195. doi: 10.1186/cc9313.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Erdman MJ, Doepker BA, Gerlach AT, Phillips GS, Elijovich L, Jones GM. A comparison of severe hemodynamic disturbances between dexmedetomidine and propofol for sedation in neurocritical care patients. Crit Care Med. 2014;42(7):1696–702. doi: 10.1097/CCM.0000000000000328.PubMedCrossRefGoogle Scholar
  154. 154.
    Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–9. doi: 10.1007/s12028-010-9412-8.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–44. doi: 10.1164/rccm.2107138.PubMedCrossRefGoogle Scholar
  156. 156.
    Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, Francis J, Speroff T, Gautam S, Margolin R, Sessler CN, Dittus RS, Bernard GR. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983–91. doi: 10.1001/jama.289.22.2983.PubMedCrossRefGoogle Scholar
  157. 157.
    Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27(7):1325–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Deogaonkar A, Gupta R, DeGeorgia M, Sabharwal V, Gopakumaran B, Schubert A, Provencio JJ. Bispectral Index monitoring correlates with sedation scales in brain-injured patients. Crit Care Med. 2004;32(12):2403–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Spies C, Macguill M, Heymann A, Ganea C, Krahne D, Assman A, Kosiek HR, Scholtz K, Wernecke KD, Martin J. A prospective, randomized, double-blind, multicenter study comparing remifentanil with fentanyl in mechanically ventilated patients. Intensive Care Med. 2011;37(3):469–76. doi: 10.1007/s00134-010-2100-5.PubMedCrossRefGoogle Scholar
  160. 160.
    Devabhakthuni S, Armahizer MJ, Dasta JF, Kane-Gill SL. Analgosedation: a paradigm shift in intensive care unit sedation practice. Ann Pharmacother. 2012;46(4):530–40. doi: 10.1345/aph.1Q525.PubMedCrossRefGoogle Scholar
  161. 161.
    Karabinis A, Mandragos K, Stergiopoulos S, Komnos A, Soukup J, Speelberg B, Kirkham AJ. Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [ISRCTN50308308]. Crit Care. 2004;8(4):R268–80. doi: 10.1186/cc2896.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–80. doi: 10.1016/S0140-6736(09)62072-9.PubMedCrossRefGoogle Scholar
  163. 163.
    Iyer VN, Hoel R, Rabinstein AA. Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med. 2009;37(12):3024–30. doi: 10.1097/CCM.0b013e3181b08ac7.PubMedCrossRefGoogle Scholar
  164. 164.
    Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J, Dexmedetomidine for Long-Term Sedation I. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60. doi: 10.1001/jama.2012.304.PubMedCrossRefGoogle Scholar
  165. 165.
    Horinek EL, Kiser TH, Fish DN, MacLaren R. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. Ann Pharmacother. 2009;43(12):1964–71. doi: 10.1345/aph.1M313.PubMedCrossRefGoogle Scholar
  166. 166.
    Yahwak JA, Riker RR, Fraser GL, Subak-Sharpe S. Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy. 2008;28(8):984–91. doi: 10.1592/phco.28.8.984.PubMedCrossRefGoogle Scholar
  167. 167.
    Grof TM, Bledsoe KA. Evaluating the use of dexmedetomidine in neurocritical care patients. Neurocrit Care. 2010;12(3):356–61. doi: 10.1007/s12028-008-9156-x.PubMedCrossRefGoogle Scholar
  168. 168.
    Chen HI, Malhotra NR, Oddo M, Heuer GG, Levine JM, LeRoux PD. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery. 2008;63(5):880–6. doi: 10.1227/01.NEU.0000327882.10629.06 ; discussion 886–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Marshall GT, James RF, Landman MP, O’Neill PJ, Cotton BA, Hansen EN, Morris JA Jr., May AK. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 2010;69(2):275–83. doi: 10.1097/TA.0b013e3181de74c7.PubMedCrossRefGoogle Scholar
  170. 170.
    Teitelbaum JS, Ayoub O, Skrobik Y. A critical appraisal of sedation, analgesia and delirium in neurocritical care. Can J Neurol Sci. 2011;38(6):815–25.PubMedCrossRefGoogle Scholar
  171. 171.
    Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27(5):859–64.PubMedCrossRefGoogle Scholar
  172. 172.
    Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13(3):R77. doi: 10.1186/cc7892.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Olson DM, Thoyre SM, Peterson ED, Graffagnino C. A randomized evaluation of bispectral index-augmented sedation assessment in neurological patients. Neurocrit Care. 2009;11(1):20–7. doi: 10.1007/s12028-008-9184-6.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Brown RL, Brunn MA, Garcia VF. Cervical spine injuries in children: a review of 103 patients treated consecutively at a level 1 pediatric trauma center. J Pediatr Surg. 2001;36(8):1107–14. doi: 10.1053/jpsu.2001.25665.PubMedCrossRefGoogle Scholar
  175. 175.
    Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Ghajar J, Goldstein B, Grant GA, Kissoon N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR, American Academy of Pediatrics-Section on Neurological S, American Association of Neurological Surgeons/Congress of Neurological S, Child Neurology S, European Society of P, Neonatal Intensive C, Neurocritical Care S, Pediatric Neurocritical Care Research G, Society of Critical Care M, Paediatric Intensive Care Society UK, Society for Neuroscience in A, Critical C, World Federation of Pediatric I, Critical Care S. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents–second edition. Pediatr Crit Care Med. 2012;13(Suppl 1):S1–82. doi: 10.1097/PCC.0b013e31823f435c.PubMedGoogle Scholar
  176. 176.
    Lucking SMF, Tamburro R, Thomas N. The approach to the critically ill infant. In: Lucking SMF, Tamburro R, Thomas N, editors. Pediatric critical care study guide text and review. London: Springer; 2012. p. 690–712.CrossRefGoogle Scholar
  177. 177.
    Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, Berg MD, de Caen AR, Fink EL, Freid EB, Hickey RW, Marino BS, Nadkarni VM, Proctor LT, Qureshi FA, Sartorelli K, Topjian A, van der Jagt EW, Zaritsky AL. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S876–908. doi: 10.1161/CIRCULATIONAHA.110.971101.PubMedCrossRefGoogle Scholar
  178. 178.
    Galinski M, Treoux V, Garrigue B, Lapostolle F, Borron SW, Adnet F. Intracuff pressures of endotracheal tubes in the management of airway emergencies: the need for pressure monitoring. Ann Emerg Med. 2006;47(6):545–7. doi: 10.1016/j.annemergmed.2005.08.012.PubMedCrossRefGoogle Scholar
  179. 179.
    Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC, European Paediatric Endotracheal Intubation Study G. Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103(6):867–73. doi: 10.1093/bja/aep290.PubMedCrossRefGoogle Scholar
  180. 180.
    Khine HH, Corddry DH, Kettrick RG, Martin TM, McCloskey JJ, Rose JB, Theroux MC, Zagnoev M. Comparison of cuffed and uncuffed endotracheal tubes in young children during general anesthesia. Anesthesiology. 1997;86(3):627–31; discussion 627A.PubMedCrossRefGoogle Scholar
  181. 181.
    King BR, Baker MD, Braitman LE, Seidl-Friedman J, Schreiner MS. Endotracheal tube selection in children: a comparison of four methods. Ann Emerg Med. 1993;22(3):530–4.PubMedCrossRefGoogle Scholar
  182. 182.
    Wheeler MCC, Todres ID. The pediatric airway. In: Cote CLJ, Todres ID, editors. A practice of anesthesia for infants and children. 4th ed. Philadelphia: Saunders-Elsevier; 2009. p. 237.CrossRefGoogle Scholar
  183. 183.
    Levitan RM, Pisaturo JT, Kinkle WC, Butler K, Everett WW. Stylet bend angles and tracheal tube passage using a straight-to-cuff shape. Acad Emerg Med. 2006;13(12):1255–8. doi: 10.1197/j.aem.2006.06.058.PubMedCrossRefGoogle Scholar
  184. 184.
    Phipps LM, Thomas NJ, Gilmore RK, Raymond JA, Bittner TR, Orr RA, Robertson CL. Prospective assessment of guidelines for determining appropriate depth of endotracheal tube placement in children. Pediatr Crit Care Med. 2005;6(5):519–22.PubMedCrossRefGoogle Scholar
  185. 185.
    Patel R, Lenczyk M, Hannallah RS, McGill WA. Age and the onset of desaturation in apnoeic children. Can J Anaesth. 1994;41(9):771–4. doi: 10.1007/BF03011582.PubMedCrossRefGoogle Scholar
  186. 186.
    Weiss M, Gerber AC. Rapid sequence induction in children—It’s not a matter of time! Paediatr Anaesth. 2008;18(2):97–9. doi: 10.1111/j.1460-9592.2007.02324.x.PubMedCrossRefGoogle Scholar
  187. 187.
    Lawes EG, Campbell I, Mercer D. Inflation pressure, gastric insufflation and rapid sequence induction. Br J Anaesth. 1987;59(3):315–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Moynihan RJ, Brock-Utne JG, Archer JH, Feld LH, Kreitzman TR. The effect of cricoid pressure on preventing gastric insufflation in infants and children. Anesthesiology. 1993;78(4):652–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Weiler N, Heinrichs W, Dick W. Assessment of pulmonary mechanics and gastric inflation pressure during mask ventilation. Prehosp Disaster Med. 1995;10(2):101–5.PubMedCrossRefGoogle Scholar
  190. 190.
    Brock-Utne JG. Is cricoid pressure necessary? Paediatr Anaesth. 2002;12(1):1–4.PubMedCrossRefGoogle Scholar
  191. 191.
    Landsman I. Cricoid pressure: indications and complications. Paediatr Anaesth. 2004;14(1):43–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Lev R, Rosen P. Prophylactic lidocaine use preintubation: a review. J Emerg Med. 1994;12(4):499–506.PubMedCrossRefGoogle Scholar
  193. 193.
    Sagarin MJ, Chiang V, Sakles JC, Barton ED, Wolfe RE, Vissers RJ, Walls RM, National Emergency Airway Registry i. Rapid sequence intubation for pediatric emergency airway management. Pediatr Emerg Care. 2002;18(6):417–23.PubMedCrossRefGoogle Scholar
  194. 194.
    Zelicof-Paul A, Smith-Lockridge A, Schnadower D, Tyler S, Levin S, Roskind C, Dayan P. Controversies in rapid sequence intubation in children. Curr Opin Pediatr. 2005;17(3):355–62.PubMedCrossRefGoogle Scholar
  195. 195.
    Gronert GA. Cardiac arrest after succinylcholine: mortality greater with rhabdomyolysis than receptor upregulation. Anesthesiology. 2001;94(3):523–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Larach MG, Rosenberg H, Gronert GA, Allen GC. Hyperkalemic cardiac arrest during anesthesia in infants and children with occult myopathies. Clin Pediatr (Phila). 1997;36(1):9–16. doi: 10.1177/000992289703600102.CrossRefGoogle Scholar
  197. 197.
    Filanovsky Y, Miller P, Kao J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM. 2010;12(2):154–7.PubMedCrossRefGoogle Scholar
  198. 198.
    Sehdev RS, Symmons DA, Kindl K. Ketamine for rapid sequence induction in patients with head injury in the emergency department. Emerg Med Aust. 2006;18(1):37–44. doi: 10.1111/j.1742-6723.2006.00802.x.CrossRefGoogle Scholar
  199. 199.
    Pokela ML, Olkkola KT, Seppala T, Koivisto M. Age-related morphine kinetics in infants. Dev Pharmacol Ther. 1993;20(1–2):26–34.PubMedCrossRefGoogle Scholar
  200. 200.
    Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8(6):491–9.PubMedCrossRefGoogle Scholar
  201. 201.
    Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, Waldmann CS, Verghese C. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ. 1992;305(6854):613–6.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Nemergut ME, Aganga D, Flick RP. Anesthetic neurotoxicity: What to tell the parents? Paediatr Anaesth. 2014;24(1):120–6. doi: 10.1111/pan.12325.PubMedCrossRefGoogle Scholar
  203. 203.
    Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajalu S, Dzietko M, Pesditschek S, Mai I, Dikranian K, Olney JW, Ikonomidou C. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA. 2002;99(23):15089–94. doi: 10.1073/pnas.222550499.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.PubMedGoogle Scholar
  205. 205.
    Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707. doi: 10.1213/ane.0b013e318167ad77.PubMedCrossRefGoogle Scholar
  206. 206.
    Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, Hanig JP, Patterson TA, Slikker W Jr., Wang C. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33(2):220–30. doi: 10.1016/ Scholar
  207. 207.
    Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hubner C, Olney JW, Turski L, Ikonomidou C. N-Methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA. 1999;96(5):2508–13.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Skippen P, Seear M, Poskitt K, Kestle J, Cochrane D, Annich G, Handel J. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25(8):1402–9.PubMedCrossRefGoogle Scholar
  209. 209.
    Downard C, Hulka F, Mullins RJ, Piatt J, Chesnut R, Quint P, Mann NC. Relationship of cerebral perfusion pressure and survival in pediatric brain-injured patients. J Trauma. 2000;49(4):654–8; discussion 658–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Elias-Jones AC, Punt JA, Turnbull AE, Jaspan T. Management and outcome of severe head injuries in the Trent region 1985–1990. Arch Dis Child. 1992;67(12):1430–5.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Freeman SS, Udomphorn Y, Armstead WM, Fisk DM, Vavilala MS. Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury. Anesthesiology. 2008;108(4):588–95. doi: 10.1097/ALN.0b013e31816725d7.PubMedCrossRefGoogle Scholar
  212. 212.
    Seder DB, Mayer SA. Critical care management of subarachnoid hemorrhage and ischaemic stroke. Clin Chest Med. 2009;30(1):103–22. doi: 10.1016/j.ccm.2008.11.004.PubMedCrossRefGoogle Scholar

Copyright information

© Neurocritical Care Society 2017

Authors and Affiliations

  • Venkatakrishna Rajajee
    • 1
    Email author
  • Becky Riggs
    • 2
  • David B. Seder
    • 3
  1. 1.Departments of Neurosurgery and NeurologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of PediatricsJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Critical Care Services, Maine Medical CenterTufts University School of MedicineBostonUSA

Personalised recommendations