Real-time Noninvasive Monitoring of Intracranial Fluid Shifts During Dialysis Using Volumetric Integral Phase-Shift Spectroscopy (VIPS): A Proof-of-Concept Study

  • Chethan P. Venkatasubba Rao
  • Eric M. Bershad
  • Eusebia Calvillo
  • Nelson Maldonado
  • Rahul Damani
  • Sreedhar Mandayam
  • Jose I. Suarez
Original Article

Abstract

Background

Cerebral edema, which is associated with increased intracranial fluid, is often a complication of many acute neurological conditions. There is currently no accepted method for real-time monitoring of intracranial fluid volume at the bedside. We evaluated a novel noninvasive technique called “Volumetric Integral Phase-shift Spectroscopy (VIPS)” for detecting intracranial fluid shifts during hemodialysis.

Methods

Subjects receiving scheduled hemodialysis for end-stage renal disease and without a history of major neurological conditions were enrolled. VIPS monitoring was performed during hemodialysis. Serum osmolarity, electrolytes, and cognitive function with mini-mental state examination (MMSE) were assessed.

Results

Twenty-one monitoring sessions from 14 subjects (4 women), mean group age 50 (SD 12.6), were analyzed. The serum osmolarity decreased by a mean of 6.4 mOsm/L (SD 6.6) from pre- to post-dialysis and correlated with an increase in the VIPS edema index (E-Dex) of 9.7% (SD 12.9) (Pearson’s correlation r = 0.46, p = 0.037). Of the individual determinants of serum osmolarity, changes in serum sodium level correlated best with the VIPS edema index (Pearson’s correlation, r = 0.46, p = 0.034). MMSE scores did not change from pre- to post-dialysis.

Conclusions

We detected an increase in the VIPS edema index during hemodialysis that correlated with decreased serum osmolarity, mainly reflected by changes in serum sodium suggesting shifts in intracranial fluids.

Keywords

Noninvasive monitoring Cerebral edema Dialysis dysequillibrium ESRD VIPS Intracranial fluid shifts 

Supplementary material

12028_2017_409_MOESM1_ESM.jpg (484 kb)
Supplement Fig. 1aCerebrotech Monitoring System: CMS 4000. Version lacking the external connecting cables (JPEG 484 kb)
12028_2017_409_MOESM2_ESM.jpg (2.4 mb)
Supplement Fig. 1bCerenbrotech Monitoring System: CMS 5000. Improvised system with advanced head frame (JPEG 2453 kb)

References

  1. 1.
    Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(4):1222–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Johnson NJ, Luks AM. High-Altitude Medicine. Med Clin N Am. 2016;100(2):357–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Raslan A, Bhardwaj A. Medical management of cerebral edema. Neurosurg Focus. 2007;22(5):E12.CrossRefPubMedGoogle Scholar
  5. 5.
    Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB, et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8(4):326–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Frontera J, Ziai W, O’Phelan K, Leroux PD, Kirkpatrick PJ, Diringer MN, et al. Regional brain monitoring in the neurocritical care unit. Neurocrit Care. 2015;22(3):348–59.CrossRefPubMedGoogle Scholar
  8. 8.
    Gonzalez CA, Rubinsky B. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction. Physiol Meas. 2006;27(6):539–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Rojas R, Rubinsky B, Gonzalez CA. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study. Physiol Meas. 2008;29(6):S255–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Gonzalez CA, Valencia JA, Mora A, Gonzalez F, Velasco B, Porras MA, et al. Volumetric electromagnetic phase-shift spectroscopy of brain edema and hematoma. PLoS ONE. 2013;8(5):e63223.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gonzalez CA, Villanueva C, Vera C, Flores O, Reyes RD, Rubinsky B. The detection of brain ischaemia in rats by inductive phase shift spectroscopy. Physiol Meas. 2009;30(8):809–19.CrossRefPubMedGoogle Scholar
  12. 12.
    Zepeda-Orozco D, Quigley R. Dialysis disequilibrium syndrome. Pediatr Nephrol. 2012;27(12):2205–11.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arieff AI. Dialysis disequilibrium syndrome: current concepts on pathogenesis and prevention. Kidney Int. 1994;45(3):629–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Bagshaw SM, Peets AD, Hameed M, Boiteau PJ, Laupland KB, Doig CJ. Dialysis Disequilibrium Syndrome: brain death following hemodialysis for metabolic acidosis and acute renal failure–a case report. BMC Nephrol. 2004;5:9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen CL, Lai PH, Chou KJ, Lee PT, Chung HM, Fang HC. A preliminary report of brain edema in patients with uremia at first hemodialysis: evaluation by diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2007;28(1):68–71.PubMedGoogle Scholar
  16. 16.
    Dorwart WV, Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin Chem. 1975;21(2):190–4.PubMedGoogle Scholar
  17. 17.
    Leasure A, Kimberly WT, Sansing LH, Kahle KT, Kronenberg G, Kunte H, et al. Treatment of edema associated with intracerebral hemorrhage. Curr Treat Options Neurology. 2016;18(2):9.CrossRefPubMedGoogle Scholar
  18. 18.
    Suarez JI. Hypertonic saline for cerebral edema and elevated intracranial pressure. Clevel Clin J Med. 2004;71(Suppl 1):S9–13.CrossRefGoogle Scholar
  19. 19.
    Georgiadis AL, Suarez JI. Hypertonic saline for cerebral edema. Curr Neurol Neurosci Rep. 2003;3(6):524–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28(9):3301–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Qureshi AI, Suarez JI, Castro A, Bhardwaj A. Use of hypertonic saline/acetate infusion in treatment of cerebral edema in patients with head trauma: experience at a single center. J Trauma. 1999;47(4):659–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Qureshi AI, Suarez JI, Bhardwaj A. Malignant cerebral edema in patients with hypertensive intracerebral hemorrhage associated with hypertonic saline infusion: a rebound phenomenon? J Neurosurg Anesthesiol. 1998;10(3):188–92.CrossRefPubMedGoogle Scholar
  23. 23.
    Qureshi AI, Suarez JI, Bhardwaj A, Mirski M, Schnitzer MS, Hanley DF, et al. Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med. 1998;26(3):440–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Port FK, Johnson WJ, Klass DW. Prevention of dialysis disequilibrium syndrome by use of high sodium concentration in the dialysate. Kidney Int. 1973;3(5):327–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Silver SM, DeSimone JA Jr, Smith DA, Sterns RH. Dialysis disequilibrium syndrome (DDS) in the rat: role of the “reverse urea effect”. Kidney Int. 1992;42(1):161–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Pappius HM, Oh JH, Dossetor JB. The effects of rapid hemodialysis on brain tissues and cerebrospinal fluid of dogs. Can J Physiol Pharmacol. 1967;45(1):129–47.CrossRefPubMedGoogle Scholar
  27. 27.
    Arieff AI, Massry SG, Barrientos A, Kleeman CR. Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int. 1973;4(3):177–87.CrossRefPubMedGoogle Scholar
  28. 28.
    Patel N, Dalal P, Panesar M. Dialysis disequilibrium syndrome: a narrative review. Semin Dial. 2008;21(5):493–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Oliver MJ, Edwards LJ, Churchill DN. Impact of sodium and ultrafiltration profiling on hemodialysis-related symptoms. J Am Soc Nephrol JASN. 2001;12(1):151–6.PubMedGoogle Scholar
  30. 30.
    Mc Causland FR, Waikar SS. Association of predialysis calculated plasma osmolarity with intradialytic blood pressure decline. Am J Kidney Dis. 2015;66(3):499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Berger L, Hakim AM. The association of hyperglycemia with cerebral edema in stroke. Stroke. 1986;17(5):865–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Glaser N, Barnett P, McCaslin I, Nelson D, Trainor J, Louie J, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. New Engl J Med. 2001;344(4):264–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Bentsen N, Larsen B, Lassen NA. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics. Stroke. 1975;6(5):497–502.CrossRefPubMedGoogle Scholar
  34. 34.
    Kong X, Wen JQ, Qi RF, Luo S, Zhong JH, Chen HJ, et al. Diffuse interstitial brain edema in patients with end-stage renal disease undergoing hemodialysis: a tract-based spatial statistics study. Medicine. 2014;93(28):e313.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hsieh TJ, Chang JM, Chuang HY, Ko CH, Hsieh ML, Liu GC, et al. End-stage renal disease: in vivo diffusion-tensor imaging of silent white matter damage. Radiology. 2009;252(2):518–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Chou MC, Hsieh TJ, Lin YL, Hsieh YT, Li WZ, Chang JM, et al. Widespread white matter alterations in patients with end-stage renal disease: a voxelwise diffusion tensor imaging study. AJNR Am J Neuroradiol. 2013;34(10):1945–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim HS, Park JW, Bai DS, Jeong JY, Hong JH, Son SM, et al. Diffusion tensor imaging findings in neurologically asymptomatic patients with end stage renal disease. Neuro Rehabil. 2011;29(1):111–6.Google Scholar
  38. 38.
    Kim TK, Seo SI, Kim JH, Lee NJ, Seol HY. Diffusion-weighted magnetic resonance imaging in the syndrome of acute bilateral basal ganglia lesions in diabetic uremia. Mov Disord. 2006;21(8):1267–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoon CH, Seok JI, Lee DK, An GS. Bilateral basal ganglia and unilateral cortical involvement in a diabetic uremic patient. Clin Neurol Neurosurg. 2009;111(5):477–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Elias MF, Seliger SL, Torres RV. Improved cognitive performance after a single dialysis session: where do we go from here? Nephrol Dial Transplant. 2015;30(9):1414–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Griva K, Newman SP, Harrison MJ, Hankins M, Davenport A, Hansraj S, et al. Acute neuropsychological changes in hemodialysis and peritoneal dialysis patients. Health Psychol. 2003;22(6):570–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Neumann D, Robinski M, Mau W, Girndt M. Cognitive testing in patients with CKD: the problem of missing cases. Clin J Am Soc Nephrol CJASN. 2017;12(3):391–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care. 2010;12(2):173–80.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rasulo FA, Bertuetti R, Robba C, Lusenti F, Cantoni A, Bernini M, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21(1):44.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wakerley BR, Kusuma Y, Yeo LL, Liang S, Kumar K, Sharma AK, et al. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging. 2015;25(1):111–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Lang EW, Mehdorn HM, Dorsch NW, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatry. 2002;72(5):583–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stocchetti N, Zoerle T, Carbonara M. Intracranial pressure management in patients with traumatic brain injury: an update. Curr Opin Crit Care. 2017;23(2):110–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Sykora M, Czosnyka M, Liu X, Donnelly J, Nasr N, Diedler J, et al. Autonomic impairment in severe traumatic brain injury: a multimodal neuromonitoring study. Crit Care Med. 2016;44(6):1173–81.CrossRefPubMedGoogle Scholar
  49. 49.
    Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015;23(Suppl 2):S76–82.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chethan P. Venkatasubba Rao
    • 1
  • Eric M. Bershad
    • 1
  • Eusebia Calvillo
    • 1
  • Nelson Maldonado
    • 1
  • Rahul Damani
    • 1
  • Sreedhar Mandayam
    • 2
  • Jose I. Suarez
    • 1
  1. 1.Department of Neurology, Section of Vascular Neurology and Neurocritical CareBaylor College of MedicineHoustonUSA
  2. 2.Department of NephrologyBaylor College of MedicineHoustonUSA

Personalised recommendations