Neurocritical Care

, Volume 24, Issue 3, pp 404–412 | Cite as

Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage

  • Bastian Volbers
  • Wolfgang Willfarth
  • Joji B. Kuramatsu
  • Tobias Struffert
  • Arnd Dörfler
  • Hagen B. Huttner
  • Stefan Schwab
  • Dimitre Staykov
Original Article



Intracerebral hemorrhage (ICH) is a devastating disease with ICH volume being the main predictor of poor outcome. The prognostic role of perihemorrhagic edema (PHE) is still unclear; however, available data are mainly derived from analyses during the first days after symptom onset. As PHE growth may continue up to 14 days after ICH, we evaluated PHE over a longer period of time and investigated its impact on short-term clinical outcome.


In this monocentric retrospective cohort study, patients with spontaneous supratentorial ICH were identified from our institutional data base. Different time points of CT scans were merged to time clusters for better comparison (day 1, 2–3, 4–6, 7–9, 10–12). Absolute volumes of ICH and PHE were obtained using a validated semiautomatic volumetric algorithm. Clinical outcome at discharge was assessed using the modified Rankin Scale (0–3 = favorable, 4–6 = poor).


220 patients (83 with favorable, 137 with poor outcome) were included in the final analysis. Mean ICH volume on admission was 22.8 [standard deviation (SD) 24.6] cm3. Mean absolute PHE volume on admission was 22.5 (SD 20.8) cm3 and increased to a mean peak volume of 38.1 (SD 31.4) cm3 during 6.7 (SD 4.1) days on average. Besides GCS on admission, functional status before ICH, peak hematoma volume, lobar localization and fever burden, and high peak PHE volume predicted poor outcome at discharge [OR 0.977 (95 % CI 0.957–0.998)] in the multivariable analysis.


PHE may have a negative impact on short-term functional outcome after ICH and therefore represent a possible treatment target.


Intracerebral hemorrhage Computed tomography Perihemorrhagic edema Outcome Clinical neurology 


Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

12028_2015_185_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 30 kb)


  1. 1.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Davis SM, Broderick J, Hennerici M, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:1175–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Arima H, Wang JG, Huang Y, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73:1963–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang J, Arima H, Wu G, et al. Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke. 2015;46:1009–13.CrossRefPubMedGoogle Scholar
  9. 9.
    Venkatasubramanian C, Mlynash M, Finley-Caulfield A, et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42:73–80.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Appelboom G, Bruce SS, Hickman ZL, et al. Volume-dependent effect of perihaematomal oedema on outcome for spontaneous intracerebral haemorrhages. J Neurol Neurosurg Psychiatry. 2013;84:488–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Staykov D, Wagner I, Volbers B, et al. Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke. 2011;42:2625–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gebel JM Jr, Jauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33:2636–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Palm F, Henschke N, Wolf J, et al. Intracerebral haemorrhage in a population-based stroke registry (LuSSt): incidence, aetiology, functional outcome and mortality. J Neurol. 2013;260:2541–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Schwarz S, Hafner K, Aschoff A, Schwab S. Incidence and prognostic significance of fever following intracerebral hemorrhage. Neurology. 2000;54:354–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Sun W, Pan W, Kranz PG, et al. Predictors of late neurological deterioration after spontaneous intracerebral hemorrhage. Neurocrit Care. 2013;19:299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sykora M, Steinmacher S, Steiner T, Poli S, Diedler J. Association of intracranial pressure with outcome in comatose patients with intracerebral hemorrhage. J Neurol Sci. 2014;342:141–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Volbers B, Staykov D, Wagner I, et al. Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography. Eur J Neurol. 2011;18:1323–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Lees KR, Bath PM, Schellinger PD, et al. Contemporary outcome measures in acute stroke research: choice of primary outcome measure. Stroke. 2012;43:1163–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Ali M, Fulton R, Quinn T, Brady M, Collaboration V. How well do standard stroke outcome measures reflect quality of life? A retrospective analysis of clinical trial data. Stroke. 2013;44:3161–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. Hoboken: Wiley; 2013.CrossRefGoogle Scholar
  21. 21.
    Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–10.CrossRefPubMedGoogle Scholar
  22. 22.
    McCourt R, Gould B, Gioia L, et al. Cerebral perfusion and blood pressure do not affect perihematoma edema growth in acute intracerebral hemorrhage. Stroke. 2014;45:1292–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Mayer SA, Lignelli A, Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke. 1998;29:1791–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Staykov D, Wagner I, Volbers B, Doerfler A, Schwab S, Kollmar R. Mild prolonged hypothermia for large intracerebral hemorrhage. Neurocrit Care. 2013;18:178–83.CrossRefPubMedGoogle Scholar
  25. 25.
    Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 2014;45:290–2.CrossRefPubMedGoogle Scholar
  26. 26.
    Mould WA, Carhuapoma JR, Muschelli J, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71:1092–101.CrossRefPubMedGoogle Scholar
  28. 28.
    Urday S, Beslow LA, Goldstein DW, et al. Measurement of perihematomal edema in intracerebral hemorrhage. Stroke. 2015;46:1116–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Chan E, Anderson CS, Wang X, et al. Significance of intraventricular hemorrhage in acute intracerebral hemorrhage: intensive blood pressure reduction in acute cerebral hemorrhage trial results. Stroke. 2015. doi: 10.1161/STROKEAHA.114.008470.Google Scholar
  30. 30.
    Mustanoja S, Satopää J, Meretoja A, et al. Extent of secondary intraventricular hemorrhage is an independent predictor of outcomes in intracerebral hemorrhage: data from the Helsinki ICH Study. Int J Stroke. 2015;10:576–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Morgan TC, Dawson J, Spengler D, et al. The modified graeb score: an enhanced tool for intraventricular hemorrhage measurement and prediction of functional outcome. Stroke. 2013;44:635–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Khan NR, Tsivgoulis G, Lee SL, et al. Fibrinolysis for intraventricular hemorrhage: an updated meta-analysis and systematic review of the literature. Stroke. 2014;45:2662–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Staykov D, Bardutzky J, Huttner HB, Schwab S. Intraventricular fibrinolysis for intracerebral hemorrhage with severe ventricular involvement. Neurocrit Care. 2011;15:194–209.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of NeuroradiologyUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of NeurologyHospital of the Brothers of St. JohnEisenstadtAustria

Personalised recommendations