Advertisement

Neurocritical Care

, Volume 23, Issue 2, pp 225–232 | Cite as

Blood Metabolomic Predictors of 1-Year Outcome in Subarachnoid Hemorrhage

  • Rickard L. SjöbergEmail author
  • Tommy Bergenheim
  • Lina Mörén
  • Henrik Antti
  • Cecilia Lindgren
  • Silvana Naredi
  • Peter Lindvall
Original Article

Abstract

Background

Delayed neurological deficit (DND) is the most important cause of morbidity and mortality in patients with subarachnoid hemorrhage (SAH) whose aneurysms have been secured. However, the methods currently used to predict the development of DND, such as trans-cranial Doppler or levels biochemical markers in blood and cerebrospinal fluid are not very accurate.

Method

Venous blood was drawn from 50 patients with SAH, admitted to the neurosurgical department Umeå University Hospital, at day 1–3 and day 7 after the bleed. The clinical status of the patients was followed up approximately 1 year after this episode and classified according to the Glasgow Outcome Score (GOS).

Results

Results showed considerable differences in blood metabolomic patterns between day 1–3 and 7 after the hemorrhage. Fifty-six out of 98 metabolites could be identified from our in-house library and 17 of these metabolites changed significantly from day 1–3 to 7 after the bleed. One of these, myo-inositol, was predictive of clinical outcome even after correction for multiple testing. An estimation of the diagnostic accuracy of high levels of this substance in predicting good outcome (GOS 4–5) yielded a sensitivity of .763 and a specificity of .5 at the optimal cut off point.

Conclusions

SAH is an event with a profound effect on blood metabolomics profiles. Myo-inositol might be an interesting compound for future study to focus on in the search for metabolic markers in venous blood of delayed neurological deterioration in SAH patients.

Keywords

Delayed neurological deficit Myo-inositol Metabolomics Subarachnoid hemorrhage Vasospasm Venous blood 

Notes

Acknowledgment

This research was supported by Grants from the County Council of Västerbotten, Sweden, and by Umeå University.

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Bernstein LM, Ivy AC. Inositol and mannitol hexanitrates in hypertension management. Circulation. 1955;12:353–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Burg MB. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J Exp Zoo. 1994;268:171–5.CrossRefGoogle Scholar
  4. 4.
    Cahill WJ, Calvert JH, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, Lee K, Badjatia M, Connoly ES, Mayer S. Transcranial doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2009;65:316–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Dreier J, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhäupl KM, Victorov I, Dimagl U. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg. 2000;93:658–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Ekelund A, Säveland H, Romner B, Brandt L. Is transcranial doppler sonography useful in detecting late cerebral ischaemia after aneurysmal subarachnoid hemorrhage. Br J Neurosurg. 1996;10:19–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Etminan N, Vergouwen MD, Ilodigwe D, Macdonald RL. Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab. 2011;31(6):1443–51.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Felig P, Owen OE, Wahren J, Cahill GF Jr. Amino acid metabolism during prolonged starvation. J Clin Invest. 1969;48(3):584–94.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Fisher C, Kistler J, Davis J. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Hou J, Zhang JH. Does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? No. Stroke. 2013;44:S34–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Hunt WE, Hess RM. Surgical risk as related to the time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Inhorn RC, Bansal VS, Majerus PW. Pathway for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism. Proc Natl Acad Sci. 1987;84:2170–4.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;305:480–4.CrossRefGoogle Scholar
  15. 15.
    Jung CS, Lange B, Zimmerman M, Zimmerman S. The CSF concentration of ADMA, but not of ET-1, is correlated with the occurrence and severity of cerebral vasospasm after subarachnoid hemorrhage. Neurosci Lett. 2012;22(524):20416.Google Scholar
  16. 16.
    Jung CS, Lange B, Zimmerman M, Seifert V. CSF and serum biomarkers focusing on cerebral vasospasm and ischemia after subarachnoid hemorrhage. Stroke Res Treat. 2013. doi: 10.1155/2013/560305.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kasseckert SA, Shahzad T, Miqdad M, Stein M, Abdallah Y, Scharbrodt W, Oertel M. The mechanisms of energy crisis in human astrocytes after subarachnoid hemorrhage. Neurosurgery. 2013;72:468–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Kassell N, Torner J, Haley E Jr. The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg. 1990;73:18–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Laumer R, Steinmeier R, Gönner F, Vogtmann T, Priem R, Fahlbush R. Cerebral hemodynamics in subarachnoid hemorrhage evaluated by transcranial doppler sonography. Part 1: reliability of flow velocities in clinical management. Neurosurgery. 2003;33:1–9.CrossRefGoogle Scholar
  20. 20.
    Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1989;100:12–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Lindgren C, Dahlqvist P, Lindvall P, Nilsson L, Koskinen L-O, Naredi S. Cortisol levels are influenced by sedation in the acute phase after subarachnoid haemorrhage. Acta Anaesthesiol Scand. 2013;57:452–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Lindgren C, Hultin M, Koskinen LO, Lindvall P, Borota L, Naredi S. ADMA levels and arginine/ADMA ratios reflect severity of disease and extent of inflammation after subarachnoid hemorrhage. Neurocrit Care. 2014;21(1):91–101. doi: 10.1007/s12028-013-9945-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu C-L, Wang J-M, Chu C-Y, Cheng M-T, Tseng T-H. In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity. Food Chem Toxicol. 2002;40:635–41.CrossRefPubMedGoogle Scholar
  24. 24.
    MacDonald RL. Does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? Yes. Stroke. 2013;44:S31–3.CrossRefPubMedGoogle Scholar
  25. 25.
    MacDonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2009;3(5):256–63.CrossRefGoogle Scholar
  26. 26.
    Nicholson J, Connelly JC, Lindon JC, Holmes E. Metabonomics: a platform for studying drug and gene function. Nat Rev Drug Metab. 2002;1:153–61.CrossRefGoogle Scholar
  27. 27.
    Öhman J, Servo A, Heiskanen O. Long-term effects of nimodipine on cerebral infarcts and outcome after aneurysmal subarachnoid hemorrhage and surgery. J Neurosurg. 1991;74:8–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28(4):399–414.CrossRefPubMedGoogle Scholar
  29. 29.
    Pickard JD, Murray GD, Illingworth R, Shaw MDM, Teasdale GM, Foy PM, Humphrey PRD, Lang DA, Nelson R, Richards P, Sinar J, Bailey S, Skene A. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298:636–42.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Pluta R. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, MacDonald L, Nishizawa S, Kasuva H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, LeRoux P, Zhang JH. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Schebesch KM, Brawanski A, Bele S, Schödel P, Herbst A, Bründl E, Kagerbauer SM, Martin J, Lohmeier A, Stoerr EM, Proescholdt M. Neuropeptide Y—an early biomarker for cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Res. 2013;35(10):1038–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Serkova NJ, Brown MS. Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis. 2012;4(3):321–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Strange K, Morrison R, Heilig CW, Dipietro S, Gullans SR. Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol. 1991;260:C784–90.PubMedGoogle Scholar
  35. 35.
    Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man. J Neurosurg. 1978;48:173–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Westermeier T, Pham M, Stetter C, Willner N, Solymosi L, Ernestus RI, Vince GH, Kunze E. Value of transcranial Doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocrit Care. 2013. doi: 10.1007/s12028-013-9896-0.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rickard L. Sjöberg
    • 1
    • 4
    Email author
  • Tommy Bergenheim
    • 1
  • Lina Mörén
    • 2
  • Henrik Antti
    • 2
  • Cecilia Lindgren
    • 3
  • Silvana Naredi
    • 3
  • Peter Lindvall
    • 1
  1. 1.Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
  2. 2.Department of Chemistry, Computational Life Science ClusterUmeå UniversityUmeåSweden
  3. 3.Department of Anaesthesiology and Intensive Care Medicine, Institute of Surgical and Pereoperative SciencesUmeå UniversityUmeåSweden
  4. 4.Department of NeurosurgeryUmeå University HospitalUmeåSweden

Personalised recommendations