Neurocritical Care

, Volume 21, Supplement 2, pp 95–102 | Cite as

Monitoring of Cerebral Autoregulation

  • Marek Czosnyka
  • Chad Miller
Review Article


Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. Failure of autoregulation is associated with a worse outcome in various acute neurological diseases. Several studies have used transcranial Doppler ultrasound, intracranial pressure (ICP with vascular reactivity as surrogate measure of autoregulation), and near-infrared spectroscopy to continuously monitor the impact of spontaneous fluctuations in CPP on cerebrovascular physiology and to calculate derived variables of autoregulatory efficiency. Many patients who undergo such monitoring demonstrate a range of CPP in which autoregulatory efficiency is optimal. Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.


Autoregulation Pressure reactivity Cerebral perfusion pressure Transcranial doppler ultrasound Near-infrared spectroscopy Cerebral blood flow 


Conflict of interest

Most of autoregulation monitoring methods is encapsulated in ICM+ software (, licensed by Cambridge Enterprise Ltd, UK. MC has a financial interest in a fraction (10%) of licensing fee.


  1. 1.
    Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A. Cerebral blood flow and metabolism in severely head-injured children. Part 2: autoregulation. J Neurosurg. 1989;71(1):72–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.PubMedGoogle Scholar
  3. 3.
    Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26(6):1014–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7 discussion 17-9.CrossRefPubMedGoogle Scholar
  5. 5.
    Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Sánchez-Porras R, Santos E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. ‘Long’ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154(9):1575–81.CrossRefGoogle Scholar
  7. 7.
    Soehle M, Jaeger M, Meixensberger J. Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage. Neurol Res. 2003;25(4):411–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Zweifel C, Castellani G, Czosnyka M, Helmy A, Manktelow A, Carrera E, Brady KM, Hutchinson PJ, Menon DK, Pickard JD, Smielewski P. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27(11):1951–8. doi: 10.1089/neu.2010.1388.CrossRefPubMedGoogle Scholar
  9. 9.
    Lam JM, Hsiang JN, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997;86(3):438–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC 3rd, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;114(1):62–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Hlatky R, Furuya Y, Valadka AB, Gonzalez J, Chacko A, Mizutani Y, Contant CF, Robertson CS. Dynamic autoregulatory response after severe head injury. J Neurosurg. 2002;97(5):1054–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Smielewski P, Czosnyka M, Kirkpatrick P, Pickard JD. Evaluation of the transient hyperemic response test in head-injured patients. J Neurosurg. 1997;86(5):773–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T. Evans DH association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg. 2004;18(5):471–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Lavinio A. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71(3):652–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39(9):2531–7.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34(10):2404–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, Clark JC, Smielewski P, Chatfield DA, Donovan T, Pickard JD, Menon DK. Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatry. 2003;74(6):765–70.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Bowles AP, Pasierb L, Simunich T, Updyke M. Implications of neurophysiological parameters in persons with severe brain injury with respect to improved patient outcomes: a retrospective review. Brain Inj. 2012;26(12):1415–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Reinert M, Andres RH, Fuhrer M, Müller A, Schaller B, Widmer H. Online correlation of spontaneous arterial and intracranial pressure fluctuations in patients with diffuse severe head injury. Neurol Res. 2007;29(5):455–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34(6):1783–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Radolovich DK, Aries MJ, Castellani G, Corona A, Lavinio A, Smielewski P, Pickard JD, Czosnyka M. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15(3):379–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38(3):981–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(8):2097–101.CrossRefPubMedGoogle Scholar
  26. 26.
    Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;14(2):188–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Czosnyka M, Balestreri M, Steiner L, Smielewski P, Hutchinson PJ, Matta B, Pickard JD. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005;102(3):450–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien). 2004;146(2):131–41.CrossRefGoogle Scholar
  30. 30.
    Chan TV, Ng SC, Lam JM, Poon WS, Gin T. Monitoring of autoregulation using intracerebral microdialysis in patients with severe head injury. Acta Neurochir Suppl. 2005;95:113–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Timofeev I, Czosnyka M, Carpenter KL, Nortje J, Kirkpatrick PJ, Al-Rawi PG, Menon DK, Pickard JD, Gupta AK, Hutchinson PJ. Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J Neurotrauma. 2011;28(6):849–60.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Jaeger M, Dengl M, Meixensberger J, Schuhmann MU. Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med. 2010;38(5):1343–7.PubMedGoogle Scholar
  33. 33.
    Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, Hutchinson PJ, Matta BF, Pickard JD, Menon D, Czosnyka M. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth. 2007;99(2):237–44 Epub 2007 May 16.CrossRefPubMedGoogle Scholar
  34. 34.
    Rangel-Castilla L, Lara LR, Gopinath S, Swank PR, Valadka A, Robertson C. Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury. J Neurotrauma. 2010;27(10):1853–63.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Thorat JD, Wang EC, Lee KK, Seow WT, Ng I. Barbiturate therapy for patients with refractory intracranial hypertension following severe traumatic brain injury: its effects on tissue oxygenation, brain temperature and autoregulation. J Clin Neurosci. 2008;15(2):143–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Steiner LA, Johnston AJ, Chatfield DA, Czosnyka M, Coleman MR, Coles JP, Gupta AK, Pickard JD, Menon DK. The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg. 2003;97(2):572–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Sviri GE, Aaslid R, Douville CM, Moore A, Newell DW. Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg. 2009;111(4):695–700.CrossRefPubMedGoogle Scholar
  38. 38.
    Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63.CrossRefPubMedGoogle Scholar
  40. 40.
    Rasulo FA, Girardini A, Lavinio A, De Peri E, Stefini R, Cenzato M, Nodari I, Latronico N. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J Neurosurg Anesth. 2012;24(1):3–8.CrossRefGoogle Scholar
  41. 41.
    Gilmore MM, Stone BS, Shepard JA, Czosnyka M, Easley RB, Brady KM. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J Perinatol. 2011;31(11):722–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36(8):1627–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40(5):1820–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Clinical Neurosciences, Division of NeurosurgeryUniversity of CambridgeCambridgeUK
  2. 2.Department of Neurology and NeurosurgeryWexner Medical Center at the Ohio State UniversityColumbusUSA

Personalised recommendations