Neurocritical Care

, Volume 20, Issue 1, pp 60–68 | Cite as

Comparison of Non-invasive and Invasive Arterial Blood Pressure Measurement for Assessment of Dynamic Cerebral Autoregulation

  • Nils H. PetersenEmail author
  • Santiago Ortega-Gutierrez
  • Andres Reccius
  • Arjun Masurkar
  • Amy Huang
  • Randolph S. Marshall
Original Article



There is a growing interest in measuring cerebral autoregulation in patients with acute brain injury. Non-invasive finger photo-plethysmography (Finapres) is the method of choice to relate arterial blood pressure to changes in cerebral blood flow. Among acutely ill patients, however, peripheral vasoconstriction often limits the use of Finapres requiring direct intravascular blood pressure measurement. We evaluated how these two different forms of blood pressure monitoring affect the parameters of dynamic cerebral autoregulation (DCA).


We performed 37 simultaneous recordings of BP and cerebral blood flow velocity in 15 patients with acute brain injury. DCA was estimated in the frequency domain using transfer function analysis to calculate phase shift, gain, and coherence. In addition the mean velocity index (Mx) was calculated for assessment of DCA in the time domain.


The mean patient age was 58.1 ± 15.9 years, 80 % (n = 12) were women. We found good inter-method agreement between Finapres and direct intravascular measurement using Bland–Altman and correlation analyses. Finapres gives higher values for the efficiency of dynamic CA compared with values derived from radial artery catheter, as indicated by biases in the phase (26.3 ± 11.6° vs. 21.7 ± 10.5°, p = 0.001) and Mx (0.571 ± 0.137 vs. 0.649 ± 0.128, p < 0.001). Gain in the low frequency range did not significantly differ between the two arterial blood pressure methods. The average coherence between CBFV and ABP was higher when BP was measured with arterial catheter for frequencies above 0.05 Hz (0.8 vs. 0.73, p < 0.001).


Overall, both methods yield similar results and can be used for the assessment of DCA. However, there was a small but significant difference for both mean Mx and phase shift, which would need to be adjusted for during monitoring of patients when using both methods. When available, invasive arterial blood pressure monitoring may improve accuracy and thus should be the preferred method for DCA assessment in the ICU.


Dynamic cerebral autoregulation Cerebral blood flow Transcranial Doppler ultrasound Arterial blood pressure Finapres Transfer function analysis 


  1. 1.
    Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(Suppl):201–4.PubMedGoogle Scholar
  2. 2.
    Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984;15(3):413–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Budohoski KP, Reinhard M, Aries MJH, Czosnyka Z, Smielewski P, Pickard JD, et al. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care. 2012;. doi: 10.1007/s12028-011-9572-1.Google Scholar
  4. 4.
    Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T, Evans DH. Association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg. 2004;18(5):471–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Reinhard M, Rutsch S, Lambeck J, Wihler C, Czosnyka M, Weiller C, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurologica Scandinavica. 2011;. doi: 10.1111/j.1600-0404.2011.01515.x.PubMedGoogle Scholar
  7. 7.
    Reinhard M. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke. 2005;36(8):1684–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Reinhard M, Wihler C, Roth M, Harloff A, Niesen W-D, Timmer J, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis. Cerebrovasc Dis. 2008;26(2):147–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Immink RV, van Montfrans GA, Stam J, Karemaker JM, Diamant M, van Lieshout JJ. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke. Stroke. 2005;36(12):2595–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Reinhard M, Neunhoeffer F, Gerds TA, Niesen W-D, Buttler K-J, Timmer J, et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010;36(2):264–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakagawa K, Serrador JM, LaRose SL, Sorond FA. Dynamic cerebral autoregulation after intracerebral hemorrhage: a case-control study. BMC Neurol. 2011;11:108.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Tiecks FPF, Lam AMA, Aaslid RR, Newell DWD. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26(6):1014–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Diehl RR, Linden D, Lücke D, Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke. 1995;26(10):1801–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Reinhard M, Muller T, Guschlbauer B, Timmer J, Hetzel A. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation: a comparison between spontaneous and respiratory-induced oscillations. Physiol Meas. 2003;24(1):27–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Reinhard M, Roth M, Muller T, Czosnyka M. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke. 2003;34:2138–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Imholz BP, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998;38(3):605–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transact Audio Electroacoust. 1967;15(2):70–3.CrossRefGoogle Scholar
  19. 19.
    Gommer ED, Shijaku E, Mess WH, Reulen JPH. Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility. Med Biol Eng Comput. 2010;48(12):1243–50.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hu HH, Kuo TB, Wong WJ, Luk YO, Chern CM, Hsu LC, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J Cereb Blood Flow Metab. 1999;19(4):460–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Lang EW, Lagopoulos J, Griffith J, Yip K, Mudaliar Y, Mehdorn HM, et al. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma. 2003;20(1):69–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10(3):373–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Statistical methods in medical research. SAGE Publications. 1999;8(2):135–60.Google Scholar
  25. 25.
    Sullivan LM. Repeated Measures. Circulation. 2008;117(9):1238–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Lavinio A, Schmidt EA, Haubrich C, Smielewski P, Pickard JD, Czosnyka M. Noninvasive evaluation of dynamic cerebrovascular autoregulation using Finapres plethysmograph and transcranial Doppler. Stroke. 2007;38(2):402–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Omboni S, Parati G, Frattola A, Mutti E, Di Rienzo M, Castiglioni P, et al. Spectral and sequence analysis of finger blood pressure variability. Comparison with analysis of intra-arterial recordings. Hypertension. 1993;22(1):26–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Sammons EL, Samani NJ, Smith SM, Rathbone WE, Bentley S, Potter JF, et al. Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation. J Appl Physiol. 2007;103(1):369–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Siegel G. Principles of vascular rhythmogenesis. Prog Appl Microcirc. 1983;3:40–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nils H. Petersen
    • 1
    • 3
    Email author
  • Santiago Ortega-Gutierrez
    • 1
  • Andres Reccius
    • 2
  • Arjun Masurkar
    • 1
  • Amy Huang
    • 1
  • Randolph S. Marshall
    • 1
  1. 1.Stroke Division, Department of NeurologyColumbia UniversityNew YorkUSA
  2. 2.Department of Critical Care, Clinica AlemanaUniversidad del DesarrollocationSantiagoChile
  3. 3.Neuroscience Intensive Care UnitMassachusetts General HospitalBostonUSA

Personalised recommendations