Advertisement

Neurocritical Care

, Volume 21, Issue 1, pp 152–162 | Cite as

Cerebral Microdialysis in Traumatic Brain Injury and Subarachnoid Hemorrhage: State of the Art

  • Marcelo de Lima Oliveira
  • Ana Carolina Kairalla
  • Erich Talamoni Fonoff
  • Raquel Chacon Ruiz Martinez
  • Manoel Jacobsen Teixeira
  • Edson Bor-Seng-Shu
Essentials and Basics

Abstract

Cerebral microdialysis (CMD) is a laboratory tool that provides on-line analysis of brain biochemistry via a thin, fenestrated, double-lumen dialysis catheter that is inserted into the interstitium of the brain. A solute is slowly infused into the catheter at a constant velocity. The fenestrated membranes at the tip of the catheter permit free diffusion of molecules between the brain interstitium and the perfusate, which is subsequently collected for laboratory analysis. The major molecules studied using this method are glucose, lactate, pyruvate, glutamate, and glycerol. The collected substances provide insight into the neurochemical features of secondary injury following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) and valuable information about changes in brain metabolism within a short time frame. In this review, the authors detail the CMD technique and its associated markers and then describe pertinent findings from the literature about the clinical application of CMD in TBI and SAH.

Keywords

Microdialysis Metabolism Brain injury Monitoring Subarachnoid hemorrhage Critical care 

References

  1. 1.
    Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical too. British J Anaesth. 2006;97(1):18–25.CrossRefGoogle Scholar
  2. 2.
    Nordstron CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.CrossRefGoogle Scholar
  3. 3.
    Hillerd L, Persson L, Nilsson P, Engstrom ER, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.CrossRefGoogle Scholar
  4. 4.
    Bellander BM, Cantais E, Nordstrom CH, Robertson C, Sahuquillo J, Smith M, Stocchetti N, Ungerstedt U, Unterberg A, Olsen NV. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Stocchetti N, Colombo A, Ortoloni F, Videtta W, Marchesi R, Longhi L, Zainer ER. Time course of intracranial hypertension after traumatic brain injury. J Neurotrauma. 2007;24:1339–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Nordstron CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:456–72.Google Scholar
  7. 7.
    Nagel A, Graetz D, Shinck T, Frieler K, Sakowtz O, Vajkoczy P, Sarrafzadeh A. Relevance of intracranial hypertension for cerebral metabolism in aneurismal subarachnoid hemorrhage. J Neurosurg. 2009;111:94–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Peerdeman SM, Girbes ARJ, Vandertop WP. Cerebral microdialysis as a new tool for neurometabolic monitoring. Intensive Car Med. 2000;26:662–9.CrossRefGoogle Scholar
  9. 9.
    Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD. Cerebral microdialysis methodology–evaluation of 20 kDa and 100 kDa catheters. Physiol Meas. 2005;26:423–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Mendelowitsch A. Microdialysis: intraoperative and posttraumatic applications in neurosurgery. Methods. 2001;23:73–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Timofeev I, Czosnyka M, Carpenter KLH, Nortje J, Kirkpatrick PJ, Al-Rawi PG, Menon DK, Pickard JD, Gupta AK, Hutchinson PJ. Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J Neurotrauma. 2011;28:849–60.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Stahl N, Mellergard P, Hasllstrom A, Ungertedt U, Nordstrom CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthsiol Scand. 2013;45:977–85.CrossRefGoogle Scholar
  13. 13.
    De Andrade AF, Paiva WS, Prudente M, Bernardo L, Teixeira MJ. Intensive care management in brain contusion with microdialysis technique. Arq Neuropsiquiatr. 2012;70(8):640–1.PubMedCrossRefGoogle Scholar
  14. 14.
    Bor-Seng-Shu E, Oliveira ML, Teixeira MJ. Traumatic brain injury and metabolism. J Neurosurgery. 2010;112:1351–3.CrossRefGoogle Scholar
  15. 15.
    Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen A. The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats. Neurosurgery. 2011;68:223–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.PubMedCrossRefGoogle Scholar
  18. 18.
    De Fazio M, Rammo R, O’Phelan K, Bullok MR. Alterations in cerebral oxidative metabolism following traumatic brain injury. Neurcrit Care. 2011;14:91–6.CrossRefGoogle Scholar
  19. 19.
    Soustiel JF, Glenn TC, Shik VA, Boscardin J, Mahamid E, Zaaroor M. Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma. 2005;22:955–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Hillered L, Enblad P. Nonischemic energy metabolic crisis in acute brain injury. Crit Care Med. 2008;36(10):2952–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Bartinik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma. 2005;22(10):1052–65.CrossRefGoogle Scholar
  24. 24.
    Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, Mcarthur DL, Caron MJ, Kraus JF, Becker DF. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Ben-Yoseph O, Boxer PA, Ross BD. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J Neurochem. 1996;66:2329–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Dusick JR, Glenn TC, Lee WNP, Vespa PM, Kelly DF, Lee SM, Hovda DA, Martin NA. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2] glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.PubMedCrossRefGoogle Scholar
  27. 27.
    Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg. 2008;108:943–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Xaredi S, Olivecrona M, Lindgren C, Ostlund AL, Grande PO, Koskinen LO. An outcome study of severe traumatic head injury using the “Lund therapy” with low-dose prostacyclin. Acta Anaesthesiol Scan. 2001;45:402–6.CrossRefGoogle Scholar
  29. 29.
    Ling GSF, Neal JC. Maintaining cerebral perfusion pressure is a worthy clinical goal. Neurocrit Care. 2005;2:75–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Bor-Seng-Shu E, Figueiredo E, Fonoff ET, Fujimoto Y, Panerai RB, Teixeira MJ. Decompressive craniectomy and head injury: brain morphometry, ICP, cerebral hemodynamics, cerebral microvascular reactivity and neurochemistry. Neurosurg Review. 2012. doi: 10.1007/s10143-013-0453-2.Google Scholar
  31. 31.
    Johnson U, Nilsson P, Ronne-Engstrom E, Howells T, Enblad P. Favorable outcome in traumatic brain injury patients with impaired cerebral pressure autoregulation when treated at low cerebral perfusion pressure levels. Neurosurgery. 2011;68:714–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen HI, Stiefel MF, Oddo M, Mylbi AH, Maloney-Wilensky E, Frangos S, Levine JM, Kofke WA, LeRoux PD. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69(1):53–63.PubMedCrossRefGoogle Scholar
  33. 33.
    David WN, Björn T, Robert MMC, Harriet N, Anders H, Anders R, Michael W, Bo-Michael B, Eddie W. Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement. BMC Medicine. 2011. doi: 10.1186/1741-7015-9-21.Google Scholar
  34. 34.
    Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E, Stiefel M, Kofke WA, Levine JM, Le Roux PD. Subarachnoid hemorrhage hemoglobin concentration and cerebral metabolism in patients with aneurysmal. Stroke. 2009;40:1275–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Schlenk F, Graetz D, Nagel A, Schmidt M, Sarrafzadeh AS. Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care. 2008;12:1–7.CrossRefGoogle Scholar
  36. 36.
    Vespa P, Boonyaputthiku R, MacArthur DL, Miller C, Etchepare M, Bergsneider M, Glen T, Martin N, Hovda D. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Zetterling M, Hillered L, Enblad P, Karlsson T, Ronne-Engstrom E. Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg. 2011;115:66–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Roux PL, Mayer SA. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care. 2008;36(12):3233–8.CrossRefGoogle Scholar
  39. 39.
    Shilenk F, Frieler K, Nagel A, Vajkoczy P, Sarrafzadeh AS. Cerebral microdialysis for detection of bacterial meningitis in aneurysmal subarachnoid hemorrhage patients: a cohort study. Crit Care. 2009. doi: 10.1186/cc7689.Google Scholar
  40. 40.
    Vespa PM, McArthur D, O’Phelan K, Glenn T, Etchepare M, Kelly D, Bergsneider M, Martin NA, Hovda DA. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30(5):1062–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Hanggi D. Monitoring and detection of vasospasm II: EEG and invasive monitoring. Neurocrit Care. 2011;15:318–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Wartenberg KE. Critical care of poor-grade subarachnoid hemorrhage. Curr Opin Crit Care. 2011;17:85–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Clausen T, Alves OL, Reinert M. Association between elevated brain tissue glycerol levels and poor outcome following sever traumatic brain injury. J Neurosurg. 2005;103:233–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurological outcome after traumatic brain injury: development and validation in a multicenter dataset. Neurol crit care. 2013. doi: 10.1097/CCM.0b013e3182742d0a.Google Scholar
  46. 46.
    Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Gleen TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care. 2007;35(12):2830–6.CrossRefGoogle Scholar
  47. 47.
    Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87(1):9–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Bor-Seng-Shu E, Hirsh R, Teixeira MJ, Andrade AF, Junior RM. Cerebral hemodynamic changes gauged by transcranial Doppler ultrasonography in patients with posttraumatic brain swelling treated by surgical decompression. J Neurosurg. 2006;104:93–100.PubMedCrossRefGoogle Scholar
  49. 49.
    Scafidi S, O’Brien J, Hopikins I, Robertson C, Fiskum G, Mackenna M. Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem. 2009;109(Suppl 1):189–97.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Asgari S, Vespa P, Hu X. Is there any association between cerebral vasoconstriction/vasodilatation and microdialysis lactate to pyruvate ratio increase? Neurocrit Care. 2013. doi: 10.1007/s12028-013-9821-6.PubMedGoogle Scholar
  51. 51.
    Kristal BS, Dubinsky JM. Mitochondrial permeability transition in central nervous system: induction by calcium cycling-dependent and independent pathways. J. Neurochem. 1997;69:524–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Helbok R, Ko SB, Schmidt M, Kurtz P, Fernandez L, Choi A, Connolly S, Lee K, Bdjatia N, Mayer SA, Claassen J. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Soehle M, Chatfield DA, Czousnika M, Kirkpatrick PJ. Predictive value of initial clinical status, intracranial pressure and transcranial Doppler pulsatility after subarachnoid haemorrhage. Achita Neurochir. 2007;149:575–83.CrossRefGoogle Scholar
  54. 54.
    Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129:778–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Sunami K, Nakamura T, Kubota M, et al. Spreading depression following experimental head injury in the rat. Neurol Med Chir. 1989;29:975–80.CrossRefGoogle Scholar
  56. 56.
    Hopwood SE, Parkin MC, Bezzina EL, Boutelle MG, Strong AJ. Transient changes in cortical glucose and lactate levels associated with peri-infarct depolarisations, studied with rapid-sampling microdialysis. J Cereb Blood Flow Metab. 2005;25:391–401.PubMedCrossRefGoogle Scholar
  57. 57.
    Brennan KC, Beltran-Parrazal L, Lopez-Valdes HE, Theriot J, Toga AW, Charles EC. Distinct vascular conduction with cortical spreading depression. J Neurophysiol. 2007;97:4143–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Roberts DJ, Jenne CN, Léger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Young VW, Kubes P, Zygym DA. A prospective evaluation of the temporal matrix metalloproteinase response after severe traumatic brain injury in humans. J Neurotrauma. 2013. doi: 10.1089/neu.2012.2841.Google Scholar
  59. 59.
    Magnoni S, Esparza TJ, Cont V, Carbonara M, Carrabba G, Holtzman DM, Zipefel GJ, Stocchetti N, Brody DL. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2012;135:1268–80.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Calusen F, Marklund N, Lewén A, Enblad P, Basu S, Hillerd L. Interstitial F2-Isoprotstane 8-Iso-PGF2α as a biomarker of oxidative stress after severe human traumatic brain injury. J Neurotrauma. 2012;29:766–75.CrossRefGoogle Scholar
  61. 61.
    Yokobori S, Hajavelli S, Mondello S, Mo-Seaney J, Bramlett HM, Dietrich D, Bullock MR. Neuroprotective effect of preoperatively induced mild hypothermia as determined by biomarkers and histopathological estimation in a rat subdural hematoma decompression model. J Neurosurg. 2013;118:370–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Helmy A, Antoniades CA, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Principal component analysis of cytokine and chemokine response to human traumatic brain injury. PLoS ONE. 2012;7(6):e39677.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Yan EB, Hellewell SC, Bellander BM, Agyopomaa DA, Morganti-Kossmann MC. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011. doi: 10.1186/1742-2094-8-147.Google Scholar
  64. 64.
    Bouras T, Gatzonis S, Georgakoulias N, Karatza M, Siatouni A, Stranjalis G, Boaviatsis E, Vasileiou S, Sakas DE. Neuro-inflammatory sequelae of minimal trauma in the non-traumatized human brain. A microdialysis study. J Neurotrauma. 2011. doi: 10.1089/neu.2011.1790.PubMedGoogle Scholar
  65. 65.
    Rooyackers O, Thorell A, Nygren J, Ljungqvist O. Microdialysis methods for measuring human metabolism. Curr Opin Clin Nutr Metab Care. 2004;7:515–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS. Cyclosporin a preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma. 2011;28:763–74.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Hugosson R, Sjolander U, Ungerstedt U. Treatment of malignant glioma by a new therapeutic principle. Acta Neurochir (Wien). 1992;114:8–11.CrossRefGoogle Scholar
  68. 68.
    Klaus S, Heringlake M, Bahlmann L. Bench-to-bedside review: microdialysis in intensive care medicine. Crit Care. 2004;8:363–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marcelo de Lima Oliveira
    • 1
  • Ana Carolina Kairalla
    • 1
  • Erich Talamoni Fonoff
    • 1
  • Raquel Chacon Ruiz Martinez
    • 2
  • Manoel Jacobsen Teixeira
    • 1
  • Edson Bor-Seng-Shu
    • 1
  1. 1.Division of Neurological Surgery, Hospital das Clinicas, School of MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Discipline of Surgical Technique, Department of Surgery, School of MedicineUniversity of São PauloSão PauloBrazil

Personalised recommendations