Advertisement

Neurocritical Care

, Volume 19, Issue 2, pp 140–149 | Cite as

The Effects of Fluid Balance and Colloid Administration on Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage: A Propensity Score-Matched Analysis

  • George M. Ibrahim
  • R. Loch Macdonald
Original Article

Abstract

Background

Delayed ischemic neurological deficit (DIND) following aneurysmal subarachnoid hemorrhage (SAH) remains a significant cause of mortality and disability. The administration of colloids and the induction of a positive fluid balance during the vasospasm risk period remain controversial. Here, we compared DIND and outcomes among propensity score-matched cohorts who did and did not receive colloids and also tested the effect of a positive fluid balance on these endpoints.

Methods

Exploratory analysis was performed on 413 patients enrolled in CONSCIOUS-1, a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Propensity score matching was performed on the basis of age, gender, pre-existing heart conditions, hypertension, nicotine use, World Federation of Neurosurgical Societies scores, aneurysm location, clazosentan treatment, subarachnoid clot burden, and severity of angiographic vasospasm. Inferential statistics were used for group-wise comparisons.

Results

One hundred twenty-three subjects were matched (41 received colloids, whereas 82 did not). The covariate balance and propensity score distributions were acceptable. There was no difference between the groups with respect to DIND (17 vs. 22 %; p = 0.64) or the presence (48 vs. 51 %; p = 0.71) or volume of delayed infarcts (volume >7.5 cm3; 62 vs. 48 %; p = 0.41). Similarly, no differences were found on multivariate analysis between patients who did and did not have a positive fluid balance, although patients with severe angiographic vasospasm had more delayed infarcts with a negative fluid balance (p = 0.01). Among all subjects, the administration of colloids and a positive fluid balance were associated with worse outcomes on the NIHSS (p = 0.04) and modified Rankin (p = 0.02) scales, respectively.

Conclusions

Colloid administration and induction of a positive fluid balance during the vasospasm risk period may be associated with poor outcomes in specific patient groups. Patient selection is of utmost importance when managing the fluid status of patients with aneurysmal SAH.

Keywords

Hemodynamic therapy HHH Fluid balance Subarachnoid hemorrhage Triple-H Vasospasm Volume expansion 

Abbreviations

ACA

Anterior cerebral artery

CT

Computed tomography

DIND

Delayed ischemic neurological deficit

GOSE

Extended glasgow outcome scale

HHH

Triple-H (hypertension, hypervolemia, hemodilution)

ICA

Internal carotid artery

MCA

Middle cerebral artery

mRS

Modified rankin scale

NIHSS

National Institutes of Health Stroke Scale

SAH

Subarachnoid hemorrhage

WFNS

World Federation of Neurosurgical Societies

Notes

Disclosures

Actelion Pharmaceuticals, Ltd., was the sponsor of the CONSCIOUS-1 trial; the company provided the authors with the trial dataset, but had no role in this exploratory analysis nor the development of the article. The data analysis and writing are the work of the authors. R. Loch Macdonald is a chief scientific officer at Edge Therapeutics, Inc.

References

  1. 1.
    Rinkel GJ. Medical management of patients with aneurysmal subarachnoid haemorrhage. Int J Stroke. 2008;3:193–204. doi: 10.1111/j.1747-4949.2008.00210.x.PubMedCrossRefGoogle Scholar
  2. 2.
    Treggiari MM, Deem S. Which H is the most important in triple-H therapy for cerebral vasospasm? Curr Opin Crit Care. 2009;15:83–6. doi: 10.1097/MCC.0b013e32832922d1.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas DJ, Marshall J, Russell RW, Wetherley-Mein G, du Boulay GH, Pearson TC, et al. Effect of haematocrit on cerebral blood-flow in man. Lancet. 1977;2:941–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Tu YK, Kuo MF, Liu HM. Cerebral oxygen transport and metabolism during graded isovolemic hemodilution in experimental global ischemia. J Neurol Sci. 1997;150:115–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35:1844–51. doi: 10.1097/01.CCM.0000275392.08410.DD.PubMedCrossRefGoogle Scholar
  6. 6.
    Rhoney DH, Tipps LB, Murry KR, Basham MC, Michael DB, Coplin WM. Anticonvulsant prophylaxis and timing of seizures after aneurysmal subarachnoid hemorrhage. Neurology. 2000;55:258–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Rinkel GJ, Feigin VL, Algra A, van Gijn J. Circulatory volume expansion therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2004;8(4):CD000483. doi: 10.1002/14651858.CD000483.pub2.Google Scholar
  8. 8.
    Solenski NJ, Haley EC Jr, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23:1007–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Treggiari MM, Walder B, Suter PM, Romand JA. Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage. J Neurosurg. 2003;98:978–84. doi: 10.3171/jns.2003.98.5.0978.PubMedCrossRefGoogle Scholar
  10. 10.
    Brandt S, Regueira T, Bracht H, Porta F, Djafarzadeh S, Takala J, et al. Effect of fluid resuscitation on mortality and organ function in experimental sepsis models. Crit Care. 2009;13:R186. doi: 10.1186/cc8179;10.1186/cc8179.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–108. doi: 10.1378/chest.128.5.3098.PubMedCrossRefGoogle Scholar
  12. 12.
    Klein MB, Hayden D, Elson C, Nathens AB, Gamelli RL, Gibran NS, et al. The association between fluid administration and outcome following major burn: a multicenter study. Ann Surg. 2007;245:622–8. doi: 10.1097/01.sla.0000252572.50684.49.PubMedCrossRefGoogle Scholar
  13. 13.
    Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21. doi: 10.1161/STROKEAHA.108.519942.PubMedCrossRefGoogle Scholar
  14. 14.
    Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51:1457.PubMedCrossRefGoogle Scholar
  15. 15.
    Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20:864–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15:573–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Farrell B, Godwin J, Richards S, Warlow C. The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results. J Neurol Neurosurg Psychiatry. 1991;54:1044–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Hijdra A, Brouwers PJ, Vermeulen M, van Gijn J. Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke. 1990;21:1156–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB. Computed tomographic diagnosis of intraventricular hemorrhage. Etiol progn Radiol. 1982;143:91–6.Google Scholar
  20. 20.
    LeRoux PD, Haglund MM, Newell DW, Grady MS, Winn HR. Intraventricular hemorrhage in blunt head trauma: an analysis of 43 cases. Neurosurgery. 1992;31:678–84 discussion 684–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Ibrahim GM, Weidauer S, Vatter H, Raabe A, Macdonald RL. Attributing hypodensities on CT to angiographic vasospasm is not sensitive and unreliable. Stroke. 2012;43:109–12. doi: 10.1161/STROKEAHA.111.632745.PubMedCrossRefGoogle Scholar
  22. 22.
    Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Ibrahim GM, Vachhrajani S, Ilodigwe D, Stat M, Kassell NF, Mayer SA, et al. Method of aneurysm treatment does not affect clot clearance after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2011;. doi: 10.1227/NEU.0b013e31822e5a8e.Google Scholar
  24. 24.
    Ho D, Imai K, King G, Stuart E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 2007;15:199–236.CrossRefGoogle Scholar
  25. 25.
    D Ho K Imai, G King, E Stuart (2007) Matchit: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software.Google Scholar
  26. 26.
    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, et al. pROC: an open source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.PubMedCrossRefGoogle Scholar
  27. 27.
    Raabe A, Beck J, Keller M, Vatter H, Zimmermann M, Seifert V. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2005;103:974–81. doi: 10.3171/jns.2005.103.6.0974.PubMedCrossRefGoogle Scholar
  28. 28.
    Deans KJ, Minneci PC, Suffredini AF, Danner RL, Hoffman WD, Ciu X, et al. Randomization in clinical trials of titrated therapies: unintended consequences of using fixed treatment protocols. Crit Care Med. 2007;35:1509–16. doi: 10.1097/01.CCM.0000266584.40715.A6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2000;31:383–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Egge A, Waterloo K, Sjoholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49:593–605 discussion 605–6.PubMedGoogle Scholar
  31. 31.
    Rosenwasser RH, Delgado TE, Buchheit WA, Freed MH. Control of hypertension and prophylaxis against vasospasm in cases of subarachnoid hemorrhage: a preliminary report. Neurosurgery. 1983;12:658–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47. doi: 10.1038/nm.2333;10.1038/nm.2333.PubMedCrossRefGoogle Scholar
  33. 33.
    Dreier JP, Major S, Pannek HW, Woitzik J, Scheel M, Wiesenthal D, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012;135:259–75. doi: 10.1093/brain/awr303.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki S, Suzuki M, Iwabuchi T, Kamata Y. Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery. 1983;13:199–203.PubMedCrossRefGoogle Scholar
  35. 35.
    Martini RP, Deem S, Brown M, Souter MJ, Yanez ND, Daniel S, et al. The association between fluid balance and outcomes after subarachnoid hemorrhage. Neurocrit Care. 2012;17:191–8. doi: 10.1007/s12028-011-9573-0.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoff RG, van Dijk GW, Algra A, Kalkman CJ, Rinkel GJ. Fluid balance and blood volume measurement after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;8:391–7. doi: 10.1007/s12028-007-9043-x.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoff R, Rinkel G, Verweij B, Algra A, Kalkman C. Blood volume measurement to guide fluid therapy after aneurysmal subarachnoid hemorrhage: a prospective controlled study. Stroke. 2009;40:2575–7. doi: 10.1161/STROKEAHA.108.538116.PubMedCrossRefGoogle Scholar
  38. 38.
    Ibrahim GM, Weidauer S, Macdonald RL. Interobserver variability in the interpretation of computed tomography following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2011;115:1191–6. doi: 10.3171/2011.7.JNS11725.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of NeurosurgerySt. Michael’s HospitalTorontoCanada
  2. 2.Labatt Family Centre of Excellence in Brain Injury and Trauma ResearchKeenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoCanada
  3. 3.Department of SurgeryUniversity of TorontoTorontoCanada

Personalised recommendations