Neurocritical Care

, Volume 20, Issue 1, pp 158–171 | Cite as

Systematic Review of Efficacy, Pharmacokinetics, and Administration of Intraventricular Vancomycin in Adults

  • Karen Ng
  • Vincent H. Mabasa
  • Ivy Chow
  • Mary H. H. Ensom
REVIEW ARTICLE

Abstract

Central nervous system infections requiring treatment with intraventricular (IVT) vancomycin are becoming increasingly common with advent of intracranial devices and increasing prevalence of multi-drug resistant and nosocomial organisms. Administering vancomycin via IVT route bypasses the blood–brain barrier to allow localized and controlled delivery directly to the desired site of action, achieving high concentrations for more reliable bactericidal action. This article systematically reviews current literature on IVT vancomycin in adults, compiles current knowledge, and integrates available evidence to serve as a practical reference.Medline (1946–July 2012), Embase (1974–July 2012), and International Pharmaceutical Abstracts (1970–July 2012) were searched using terms vancomycin, intraventricular, shunt infection, cerebrospinal fluid, and intraventriculitis. Seventeen articles were included in this review. Indications for IVT vancomycin included meningitis unresponsive to intravenous antibiotics, ventriculitis, and intracranial device infections. No serious adverse effects following IVT vancomycin have been reported. Dosages reported in literature ranged from 0.075–50 mg/day, with the most evidence for dosages of 5 to 20 mg/day. Duration of therapy most commonly ranged from 7 to 21 days. Therapeutic drug monitoring was reported in 11 studies, with CSF vancomycin levels varying widely from 1.1 to 812.6 mg/L, without clear relationships between CSF levels and efficacy or toxicity. Using IVT vancomycin to treat meningitis, ventriculitis, and CNS device-associated infections appears safe and effective based on current evidence. Optimal regimens are still unclear, and dosing of IVT vancomycin requires intricate consideration of patient specific factors and their impact on CNS pathophysiology. Higher-quality clinical trials are necessary to characterize the disposition of vancomycin within CNS, and to determine models for various pathophysiological conditions to facilitate better understanding of effects on pharmacokinetic and pharmacodynamic parameters.

Keywords

Intraventricular Vancomycin Ventriculitis Meningitis Therapeutic drug monitoring 

References

  1. 1.
    Cook AM, Mieure DK, Owen RD, Pesaturo AB, Hatton J. Intracerebroventricular administration of drugs. Pharmacotherapy. 2009;29(7):832–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Tunkel AR, et al. Practice guidelines for bacterial meningitis. Clin Infect Dis. 2004;39(1):1267–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Agrawal A, Cincu R, Timothy J. Current concepts and approach to ventriculitis. Infect Dis Clin Prac. 2008;16(2):100–4.CrossRefGoogle Scholar
  4. 4.
    Lutsar I, McCracken GH Jr, Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis. 1998;27(5):1117–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Luer MS, Hatton J, Maldonado WT, Fiset C. Vancomycin administration into the cerebrospinal fluid: a review. Ann Pharmacother. 1993;27(7–8):912–21.PubMedGoogle Scholar
  6. 6.
    Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    U.S. Preventive Services Task Force. Guide to clinical preventive services: report of the U.S. Preventive Services Task Force, 2nd ed. Baltimore, MD: Williams & Wilkins; 1996.Google Scholar
  8. 8.
    Ziai WC, Lewin JJ. Improving the role of intraventricular antimicrobial agents in the management of meningitis. Curr Opin Neurol. 2009;22(3):277–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Viladrich PF, Gudiol F, Linares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother. 1991;35:2467–72.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Cabellos C, MartAnez-Lacasa J, Martos A, et al. Influence of dexamethasone on efficacy of ceftriaxone and vancomycin therapy in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 1995;39:2158–60.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Collins JM. Pharmacokinetics of intraventricular administration. J Neurooncol. 1983;1:283–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Arroyo JC, Quindlen EA. Accumulation of vancomycin after intraventricular infusions. South Med J. 1983;76(12):1554–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Richards SJ, Lambert CM, Scott AC. Recurrent listeria monocytogenes meningitis treated with intraventricular vancomycin. J Antimicrob Chemother. 1992;29(3):351–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Czaban SL, Lebkowski WJ, Krajewski JP, Borkowski J. The efficacy of intraventricularly administered vancomycin in the case of central nervous system infection caused by Enterococcus faecalis. Wiadomosci Kelarskie. 2002;55(9–10):617–25.Google Scholar
  15. 15.
    Andes DR, Craig WA. Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am. 1999;13(3):595–619.PubMedCrossRefGoogle Scholar
  16. 16.
    Bayston R, Hart CA, Barnicoat M. Intraventricular vancomycin in the treatment of ventriculitis associated with cerebrospinal fluid shunting and drainage. J Neurol Neurosurg Psychiatry. 1987;50(11):1419–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Amod F, Moodley I, Peer AKC, Sunderland J, Lovering A, Wootton M, Nadvi S, Vawda F. Ventriculitis due to a hetero strain of vancomycin intermediate Staphyloccocus aureus (hVISA): successful treatment with linezolid in combination with intraventricular vancomycin. J Infect. 2005;50:252–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwabe M, Juttner E, Blaiche A, Potthoff K, Pisarski P, Walker CF. Cure of ventriculitis and central nervous system shunt infection by Staphylococcus epidermidis with vancomycin by intraventricular injection in a liver transplant patient. Transpl Infect Dis. 2007;9:46–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Sutherland GE, Palitang EG, Marr JJ, Luedke SL. Sterilization of ommaya reservoir by instillation of vancomycin. Am J Med. 1981;71:1068–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Bayston R, Barnicoat M, Cudmore RE, Guiney EJ, Gurusinghe N, Norman PM. The use of intraventricular vancomycin in the treatment of CSF shunt-associated ventriculitis. Zeitschrift fur Kinderchirurgie. 1984;39(Suppl 2):111–3.PubMedGoogle Scholar
  21. 21.
    Swayne R, Rampling A, Newsom SWB. Intraventricular vancomycin for treatment of shunt-associated ventriculitis. J Antimicrob Chemother. 1987;19:249–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Reesor C, Chow AW, Kureishi A, Jewesson PJ. Kinetics of intraventricular vancomycin in infections of cerebrospinal fluid shunts. J Infect Dis. 1988;158(5):1142–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfausler B, Spiss H, Beer R, Kampl A, Engelhardt K, Schober M, Schmutzhard E. Treatment of Staphylococcal ventriculitis associated with external cerebrospinal fluid drains: a prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J Neurosurg. 2003;98(5):1040–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Young EJ, Ratmer RE, Clarridge JE. Staphylococcal ventriculitis treated with vancomycin. South Med J. 1981;74:1014–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Pfausler B, Haring HP, Kampfl A, Wissel J, Schober M, Schmutzhard E. Cerebrospinal fluid (CSF) pharmacokinetics of intraventricular vancomycin in patients with staphylococcal ventriculitis associated with external CSF drainage. Clin Infect Dis. 1997;25(3):733–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Morales-Garcia VD, Garza-Mercado R, Tamez-Montes D, Martinez-Ponce DLA. Efficacy of prophylactic intraventricular vancomycin in patients with ventriculostomy. Arch Neurosci. 2005;10(3):128–32.Google Scholar
  27. 27.
    LeRoux P, Howard MA III, Winn HR. Vancomycin pharmacokinetics in hydrocephalic shunt prophylaxis and relationship to ventricular volume. Surg Neurol. 1990;34:366–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Hirsch BE, Amodio M, Einzig AI, Halevy R, Soeiro R. Instillation of vancomycin into a cerebrospinal fluid reservoir to clear infection: pharmacokinetic considerations. J Infect Dis. 1991;163(1):197–200.PubMedCrossRefGoogle Scholar
  29. 29.
    Pope SD, Roecker AM. Vancomycin for treatment of invasive multi-drug resistant Staphylococcus aureus infections. Expert Opin Pharmacother. 2007;8(9):1245–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Breeze RE, McComb JG, Hyman S, Gilles FH. CSF production in acute ventriculitis. J Neurosurg. 1989;70(4):619–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Inamasu J, Kuramae T, Tomiyasu K, Nakatsukasa M. Fulminant ependymitis following intraventricular rupture of brain abscess. J Infect Chemother. 2011;17:534–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Nau R, Sorgel F, Prange HW. Pharmacokinetic optimization of the treatment of bacterial central nervous system infections. Clin Pharmacokinet. 1998;35(3):223–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Ensom MHH, Davis GA, Cropp CD, Ensom RJ. Clinical pharmacokinetics in the 21st century: does the evidence support definitive-outcomes? Clin Pharmacokinet. 1998;34(4):265–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Karen Ng
    • 1
  • Vincent H. Mabasa
    • 2
  • Ivy Chow
    • 2
  • Mary H. H. Ensom
    • 1
    • 3
  1. 1.Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Lower Mainland Pharmacy ServicesBurnaby General HospitalBurnabyCanada
  3. 3.Department of Pharmacy, 0B7Children’s and Women’s Health Centre of British ColumbiaVancouverCanada

Personalised recommendations