Neurocritical Care

, Volume 17, Issue 1, pp 58–66 | Cite as

Transcranial Doppler Pulsatility Index: What it is and What it Isn’t

  • Nicolás de Riva
  • Karol P. Budohoski
  • Peter Smielewski
  • Magdalena Kasprowicz
  • Christian Zweifel
  • Luzius A. Steiner
  • Matthias Reinhard
  • Neus Fábregas
  • John D. Pickard
  • Marek CzosnykaEmail author
Original Articles



Transcranial Doppler (TCD) pulsatility index (PI) has traditionally been interpreted as a descriptor of distal cerebrovascular resistance (CVR). We sought to evaluate the relationship between PI and CVR in situations, where CVR increases (mild hypocapnia) and decreases (plateau waves of intracranial pressure—ICP).


Recordings from patients with head-injury undergoing monitoring of arterial blood pressure (ABP), ICP, cerebral perfusion pressure (CPP), and TCD assessed cerebral blood flow velocities (FV) were analyzed. The Gosling pulsatility index (PI) was compared between baseline and ICP plateau waves (n = 20 patients) or short term (30–60 min) hypocapnia (n = 31). In addition, a modeling study was conducted with the “spectral” PI (calculated using fundamental harmonic of FV) resulting in a theoretical formula expressing the dependence of PI on balance of cerebrovascular impedances.


PI increased significantly (p < 0.001) while CVR decreased (p < 0.001) during plateau waves. During hypocapnia PI and CVR increased (p < 0.001). The modeling formula explained more than 65% of the variability of Gosling PI and 90% of the variability of the “spectral” PI (R = 0.81 and R = 0.95, respectively).


TCD pulsatility index can be easily and quickly assessed but is usually misinterpreted as a descriptor of CVR. The mathematical model presents a complex relationship between PI and multiple haemodynamic variables.


Cerebral hemodynamics Plateau waves Transcranial doppler Traumatic brain injury 



This study was supported by the National Institute of Health Research, Biomedical Research Centre (Neuroscience Theme), the Medical Research Council (Grants G0600986 and G9439390), and NIHR Senior Investigator Awards (JDP); the Hospital Clinic Grant, Barcelona, Spain (NR) and also by the Swiss National Science Foundation (PBBSP3-125550 to CZ), Bern, Switzerland.


ICM+ Software is licensed by Cambridge Enterprise, Cambridge, UK, MC and PS have a financial interest in a fraction of the licensing fee.


  1. 1.
    Kontos HA. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke. 1989;20(1):1–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67(6 Pt 1):447–9.PubMedGoogle Scholar
  3. 3.
    Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66(6):1050–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol. 2009;72(4):389–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Melo JR, Di Rocco F, Blanot S, et al. Transcranial Doppler can predict intracranial hypertension in children with severe traumatic brain injuries. Childs Nerv Syst. 2011;27(6):979–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Soehle M, Chatfield DA, Czosnyka M, Kirkpatrick PJ. Predictive value of initial clinical status, intracranial pressure and transcranial Doppler pulsatility after subarachnoid haemorrhage. Acta Neurochir (Wien). 2007;149(6):575–83.CrossRefGoogle Scholar
  8. 8.
    Giller CA, Hodges K, Batjer HH. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72(6):901–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Lim MH, Cho YI, Jeong SK. Homocysteine and pulsatility index of cerebral arteries. Stroke. 2009;40(10):3216–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosner MJ, Becker DP. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg. 1984;60(2):312–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Steiner LA, Balestreri M, Johnston AJ, et al. Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med. 2004;30(12):2180–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsu HY, Chern CM, Kuo JS, Kuo TB, Chen YT, Hu HH. Correlations among critical closing pressure, pulsatility index and cerebrovascular resistance. Ultrasound Med Biol. 2004;30(10):1329–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.PubMedCrossRefGoogle Scholar
  15. 15.
    Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Helmy A, Vizcaychipi M, Gupta AK. Traumatic brain injury: intensive care management. Br J Anaesth. 2007;99(1):32–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1–193.PubMedGoogle Scholar
  18. 18.
    Brain Trauma F, American Association of Neurological Surgeon, Congress of Neurological Surgeons, et al. Guidelines for the management of severe traumatic brain injury. XIV. Hyperventilation. J Neurotrauma 2007; 24 Suppl 1:S87–S90.Google Scholar
  19. 19.
    Raichle ME, Posner JB, Plum F. Cerebral blood flow during and after hyperventilation. Arch Neurol. 1970;23(5):394–403.PubMedCrossRefGoogle Scholar
  20. 20.
    Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63(6):721–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Carrera E, Steiner LA, Castellani G, et al. Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury. J Neurotrauma. 2011;28(6):889–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103(1):46–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Baledent O, Fin L, Khuoy L, et al. Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J Magn Reson Imaging. 2006;24(5):995–1004.PubMedCrossRefGoogle Scholar
  25. 25.
    Michel E, Zernikow B. Goslig’s Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicolás de Riva
    • 1
    • 2
  • Karol P. Budohoski
    • 1
  • Peter Smielewski
    • 1
  • Magdalena Kasprowicz
    • 1
    • 3
  • Christian Zweifel
    • 1
    • 4
  • Luzius A. Steiner
    • 1
    • 5
  • Matthias Reinhard
    • 1
    • 6
  • Neus Fábregas
    • 2
  • John D. Pickard
    • 1
  • Marek Czosnyka
    • 1
    • 7
    Email author
  1. 1.Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK
  2. 2.Department of Anesthesiology, Hospital ClinicUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institute of Biomedical Engineering and InstrumentationWroclaw University of TechnologyWroclawPoland
  4. 4.Department of NeurosurgeryUniversity Hospital of BaselBaselSwitzerland
  5. 5.Department of AnaesthesiaLausanne University HospitalLausanneSwitzerland
  6. 6.Department of NeurologyUniversity of FreiburgFreiburgGermany
  7. 7.Institute of Electronic SystemsWarsaw University of TechnologyWarsawPoland

Personalised recommendations