Neurocritical Care

, Volume 16, Issue 1, pp 42–54 | Cite as

Research and Technology in Neurocritical Care

  • C. A. C. Wijman
  • S. M. Smirnakis
  • P. Vespa
  • K. Szigeti
  • W. C. Ziai
  • M. M. Ning
  • J. Rosand
  • D. F. Hanley
  • R. Geocadin
  • C. Hall
  • P. D. Le Roux
  • J. I. Suarez
  • O. O. Zaidat
  • For the First Neurocritical Care Research Conference Investigators


The daily practice of neurointensivists focuses on the recognition of subtle changes in the neurological examination, interactions between the brain and systemic derangements, and brain physiology. Common alterations such as fever, hyperglycemia, and hypotension have different consequences in patients with brain insults compared with patients of general medical illness. Various technologies have become available or are currently being developed. The session on “research and technology” of the first neurocritical care research conference held in Houston in September of 2009 was devoted to the discussion of the current status, and the research role of state-of-the art technologies in neurocritical patients including multi-modality neuromonitoring, biomarkers, neuroimaging, and “omics” research (proteomix, genomics, and metabolomics). We have summarized the topics discussed in this session. We have provided a brief overview of the current status of these technologies, and put forward recommendations for future research applications in the field of neurocritical care.


Neurocritical care Neuromonitoring Genomics Neuroimaging Biomarkers 



The First Neurocritical Care Research Conference was funded by award R13NS065494 from the National Institute of Neurological Disorders and Stroke (P.I.: JI Suarez), the Integra Foundation, and the Neuroscience Center of the St Luke’s Episcopal Hospital in Houston, TX, and endorsed by the Neurocritical Care Society.


The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.


  1. 1.
    Guendling K, Smielewski P, Czosnyka M, et al. Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. Acta Neurochir Suppl. 2006;96:108–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Sorani MD, Hemphill JC 3rd, Morabito D, Rosenthal G, Manley GT. New approaches to physiological informatics in neurocritical care. Neurocrit Care. 2007;7:45–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Hu X, Nenov V, Bergsneider M, Glenn TC, Vespa P, Martin N. Estimation of hidden state variables of the Intracranial system using constrained nonlinear Kalman filters. IEEE Trans Biomed Eng. 2007;54:597–610.PubMedCrossRefGoogle Scholar
  4. 4.
    Hamilton R, Xu P, Asgari S, et al. Forecasting intracranial pressure elevation using pulse waveform morphology. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4331–4.PubMedGoogle Scholar
  5. 5.
    Hu X, Miller C, Vespa P, Bergsneider M. Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Med Eng Phys. 2008;30:631–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Vespa P. Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect”. J Clin Neurophysiol. 2005;22:99–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Hebb MO, McArthur DL, Alger J, et al. Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma. 2007;24:579–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Lakshmanan R, Loo JA, Drake T, et al. Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care. 2010;12:324–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Vespa PM. Metabolic penumbra in intracerebral hemorrhage. Stroke. 2009;40:1547–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst. 2010;26:419–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Figaji AA, Fieggen AG, Argent AC, Leroux PD, Peter JC. Does adherence to treatment targets in children with severe traumatic brain injury avoid brain hypoxia? A brain tissue oxygenation study. Neurosurgery 2008;63:83–91; discussion 91–92.Google Scholar
  15. 15.
    Gopinath SP, Valadka AB, Uzura M, Robertson CS. Comparison of jugular venous oxygen saturation and brain tissue Po2 as monitors of cerebral ischemia after head injury. Crit Care Med. 1999;27:2337–45.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenthal G, Hemphill JC III, Sorani M, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Hlatky R, Valadka AB, Gopinath SP, Robertson CS. Brain tissue oxygen tension response to induced hyperoxia reduced in hypoperfused brain. J Neurosurg. 2008;108:53–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Terborg C, Gröschel K, Petrovitch A, et al. Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy. Eur Neurol. 2009;62:338–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Temple RJ. A regulatory authority’s opinion about surrogate endpoints. In: Nimmo WS, Tucker GT, editors. Clinical measurement in drug evaluation. Chichester, England: John Wiley & Sons; 1995. p. 3–22.Google Scholar
  20. 20.
    Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res. 2005;138:124–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352:777–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Chavez JC, Hurko O, Barone FC, Feuerstein GZ. Pharmacologic interventions for stroke: looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke. 2009;40:e558–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Cramer SC, Parrish TB, Levy RM, et al. Predicting functional gains in a stroke trial. Stroke. 2007;38:2108–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Milot MH, Cramer SC. Biomarkers of recovery after stroke. Curr Opin Neurol. 2008;21(6):654–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Coleman MR, Davis MH, Rodd JM, et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009;132:2541–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Monti MM, Coleman MR, Owen AM. Neuroimaging and the vegetative state: resolving the behavioral assessment dilemma? Ann N Y Acad Sci. 2009;1157:81–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Boly M, Coleman MR, Davis MH, et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007;36:979–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Laureys S, Owen AM, Schiff ND. Brain function in coma, vegatative state, and related disorders. Lancet Neurol. 2004;3:537–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Mikulis DJ. Functional cerebrovascular imaging in brain ischemia: permeability, reactivity, and functional MR imaging. Neuroimaging Clin N Am. 2005;15:667–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Mandell DM, Han JS, Poublanc J, et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke. 2008;39:2021–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Griffey RT, Sodickson A. Cumulative radiation exposure and cancer risk estimates in emergency department patients undergoing repeat or multiple CT. AJR Am J Roentgenol. 2009;192:887–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251:175–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Schaefer PW, Ozsunar Y, He J, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2003;24:436–43.PubMedGoogle Scholar
  34. 34.
    Kidwell CS, Alger JR, Saver JL. Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke. 2004;35:2662–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Kassner A, Winter JD, Poublanc J, Mikulis DJ, Crawley AP. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging. 2010;31:298–304.PubMedCrossRefGoogle Scholar
  36. 36.
    An H, Liu Q, Chen Y, Lin W. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke. 2009;40:2165–72.PubMedCrossRefGoogle Scholar
  37. 37.
    An H, Lin W. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magn Reson Med. 2002;47:958–66.PubMedCrossRefGoogle Scholar
  38. 38.
    An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20:1225–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Catana C, Procissi D, Wu Y, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA. 2008;105:3705–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Wintermark M, Albers GW, Alexandrov AV, et al. Acute stroke imaging research roadmap. Stroke. 2008;39:1621–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Smirnakis SM, Brewer AA, Schmid MC, et al. Lack of long-term cortical reorganization after macaque retinal lesions. Nature. 2005;435:300–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS One. 2009;4:e5527.PubMedCrossRefGoogle Scholar
  43. 43.
    Tehovnik EJ, Slocum WM, Smirnakis SM, Tolias AS. Microstimulation of visual cortex to restore vision. Prog Brain Res. 2009;175:347–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Plow EB, Carey JR, Nudo RJ, Pascual-Leone A. Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke. 2009;40:1926–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293:1477–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA. 2003;100:7319–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Flaumenhaft R, Lo EH. Different strokes for rodent folks. Nat Methods. 2006;3:79–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA. 2007;104:365–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods. 2006;3:99–108.PubMedCrossRefGoogle Scholar
  50. 50.
    Schaffer CB, Friedman B, Nishimura N, et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 2006;4:e22.PubMedCrossRefGoogle Scholar
  51. 51.
    Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Ping P, Vondriska TM, Creighton CJ, et al. A functional annotation of subproteomes in human plasma. Proteomics. 2005;5:3506–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29:365–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Kissela BM, Sauerbeck L, Woo D, et al. Subarachnoid hemorrhage: a preventable disease with a heritable component. Stroke. 2002;33:1321–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet. 2010;11:259–72.PubMedCrossRefGoogle Scholar
  56. 56.
    McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.PubMedCrossRefGoogle Scholar
  57. 57.
    NCI-NHGRI Working Group on Replication in Association Studies, Chanock SJ, Manolio T, Boehnke M, et al. Replicating genotype-phenotype associations. Nature. 2007;447:655–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. A. C. Wijman
    • 1
    • 10
  • S. M. Smirnakis
    • 2
    • 3
  • P. Vespa
    • 4
  • K. Szigeti
    • 2
  • W. C. Ziai
    • 5
  • M. M. Ning
    • 6
  • J. Rosand
    • 7
  • D. F. Hanley
    • 5
  • R. Geocadin
    • 5
  • C. Hall
    • 7
  • P. D. Le Roux
    • 8
  • J. I. Suarez
    • 2
  • O. O. Zaidat
    • 9
  • For the First Neurocritical Care Research Conference Investigators
  1. 1.Department of NeurologyStanford UniversityPalo AltoUSA
  2. 2.Department of NeurologyBaylor College of MedicineHoustonUSA
  3. 3.Department of NeuroscienceBaylor College of MedicineHoustonUSA
  4. 4.Department of NeurologyUniversity of CaliforniaLos AngelesUSA
  5. 5.Department of NeurologyJohns Hopkins UniversityBaltimoreUSA
  6. 6.Department of NeurologyMassachusetts General Hospital, Harvard UniversityBostonUSA
  7. 7.Department of NeurologyUT Southwestern UniversityDallasUSA
  8. 8.Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  9. 9.Department of NeurologyMedical College of WisconsinMilwaukeeUSA
  10. 10.Stanford University Medical Center, Stanford Neurocritical Care ProgramPalo AltoUSA

Personalised recommendations