Neurocritical Care

, 15:257 | Cite as

Cardiovascular and Pulmonary Complications of Aneurysmal Subarachnoid Hemorrhage

  • Nicolas BruderEmail author
  • Alejandro Rabinstein
  • The Participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage


Cardiopulmonary complications after aneurysmal subarachnoid hemorrhage negatively affect overall morbidity and mortality. An electronic literature search was performed for English-language articles focused on cardiopulmonary complications with subarachnoid hemorrhage published through October 2010. A total of 278 citations were identified, including 72 clinical studies. In most cases, study quality was low or very low. Cardiac injury, evidenced by an elevation in troponin levels, is reported in about one-third of patients after aneurysmal subarachnoid hemorrhage. Arrhythmias also occur in about one-third of patients after subarachnoid hemorrhage. The incidence of pulmonary complications, especially neurogenic pulmonary edema, is more difficult to establish from available literature. Cardiopulmonary complications have been linked to worsened clinical outcome, suggesting a role for cardiac monitoring and interventions.


Acute respiratory distress syndrome Arrhythmia Myocardial Neurogenic pulmonary edema Troponin 


  1. 1.
    Cropp GJ, Manning GW. Electrocardiographic changes simulating myocardial ischemia and infarction associated with spontaneous intracranial hemorrhage. Circulation. 1960;22:25–38.PubMedGoogle Scholar
  2. 2.
    Shuster S. The electrocardiogram in subarachnoid haemorrhage. Br Heart J. 1960;22:316–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Weinberg SJ, Fuster JM. Electrocardiographic changes produced by localized hypothalamic stimulations. Ann Intern Med. 1960;53:332–41.PubMedGoogle Scholar
  4. 4.
    Doshi R, Neil-Dwyer G. Hypothalamic and myocardial lesions after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatr. 1977;40:821–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490.PubMedCrossRefGoogle Scholar
  6. 6.
    Miketic JK, Hravnak M, Sereika SM, Crago EA. Elevated cardiac troponin I and functional recovery and disability in patients after aneurysmal subarachnoid hemorrhage. Am J Crit Care. 2010;19:522–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Jyotsna M, Prasad V, Indrani G, Trikamji BV. Importance of detection of segmental wall motion abnormalities of left ventricle in nontraumatic subarachnoid hemorrhage: a prospective study. Echocardiography. 2010;27:496–500.PubMedCrossRefGoogle Scholar
  8. 8.
    Ichinomiya T, Terao Y, Miura K, et al. QTc interval and neurological outcomes in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010;13:347–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Vannemreddy P, Venkatesh P, Dinesh K, Reddy P, Nanda A. Myocardial dysfunction in subarachnoid hemorrhage: prognostication by echo cardiography and cardiac enzymes. A prospective study. Acta Neurochir Suppl. 2009;106:151–4.CrossRefGoogle Scholar
  10. 10.
    Sandvei MS, Amundsen BH, Haugen BO, Stoylen A, Slordahl SA, Vik A. Left ventricular myocardial function during the acute phase of a subarachnoid haemorrhage. Scand Cardiovasc J. 2009;43:110–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Meaudre E, Jego C, Kenane N, et al. B-type natriuretic peptide release and left ventricular filling pressure assessed by echocardiographic study after subarachnoid hemorrhage: a prospective study in non-cardiac patients. Crit Care. 2009;13:R76.PubMedCrossRefGoogle Scholar
  12. 12.
    Jung JH, Min PK, Rim SJ, Ha JW, Chung N, Lee KC. Are electrocardiographic changes in patients with acute subarachnoid hemorrhage associated with Takotsubo cardiomyopathy? Cardiology. 2009;115:98–106.PubMedCrossRefGoogle Scholar
  13. 13.
    Hravnak M, Frangiskakis JM, Crago EA, et al. Elevated cardiac troponin I and relationship to persistence of electrocardiographic and echocardiographic abnormalities after aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:3478–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Frangiskakis JM, Hravnak M, Crago EA, et al. Ventricular arrhythmia risk after subarachnoid hemorrhage. Neurocrit Care. 2009;10:287–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Abdelmoneim SS, Wijdicks EF, Lee VH, et al. Real-time myocardial perfusion contrast echocardiography and regional wall motion abnormalities after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;111:1023–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Tanabe M, Crago EA, Suffoletto MS, et al. Relation of elevation in cardiac troponin I to clinical severity, cardiac dysfunction, and pulmonary congestion in patients with subarachnoid hemorrhage. Am J Cardiol. 2008;102:1545–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Sugimoto K, Watanabe E, Yamada A, et al. Prognostic implications of left ventricular wall motion abnormalities associated with subarachnoid hemorrhage. Int Heart J. 2008;49:75–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Softeland Sandvei M, Amundsen BH, Olav Haugen B, Stoylen A, Slordahl SA, Vik A. Left ventricular function during the acute phase of a subarachnoid haemorrhage. Scand Cardiovasc J. 2008:1–7.Google Scholar
  19. 19.
    Sandhu R, Aronow WS, Rajdev A, et al. Relation of cardiac troponin I levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. Am J Cardiol. 2008;102:632–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramappa P, Thatai D, Coplin W, et al. Cardiac troponin-I: a predictor of prognosis in subarachnoid hemorrhage. Neurocrit Care. 2008;8:398–403.PubMedCrossRefGoogle Scholar
  21. 21.
    Frontera JA, Parra A, Shimbo D, et al. Cardiac arrhythmias after subarachnoid hemorrhage: risk factors and impact on outcome. Cerebrovasc Dis. 2008;26:71–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Urbaniak K, Merchant AI, Amin-Hanjani S, Roitberg B. Cardiac complications after aneurysmal subarachnoid hemorrhage. Surg Neurol. 2007;67:21–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S. Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage. Stroke. 2007;38:3218–324.PubMedCrossRefGoogle Scholar
  24. 24.
    Koenig MA, Puttgen HA, Prabhakaran V, Reich D, Stevens RD. B-type natriuretic peptide as a marker for heart failure in patients with acute stroke. Intensive Care Med. 2007;33:1587–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Yarlagadda S, Rajendran P, Miss JC, et al. Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care. 2006;5:102–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown RD Jr, Wijdicks EF. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an underappreciated ventricular dysfunction. J Neurosurg. 2006;105:264–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Kothavale A, Banki NM, Kopelnik A, et al. Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage. Neurocrit Care. 2006;4:199–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105:15–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Tung PP, Olmsted E, Kopelnik A, et al. Plasma B-type natriuretic peptide levels are associated with early cardiac dysfunction after subarachnoid hemorrhage. Stroke. 2005;36:1567–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Schuiling WJ, Dennesen PJ, Tans JT, Kingma LM, Algra A, Rinkel GJ. Troponin I in predicting cardiac or pulmonary complications and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatr. 2005;76:1565–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Naidech AM, Kreiter KT, Janjua N, et al. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Naidech A, Du Y, Kreiter KT, et al. Dobutamine versus milrinone after subarachnoid hemorrhage. Neurosurgery. 2005;56:21–61.PubMedGoogle Scholar
  33. 33.
    Kopelnik A, Fisher L, Miss JC, et al. Prevalence and implications of diastolic dysfunction after subarachnoid hemorrhage. Neurocrit Care. 2005;3:132–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Khush K, Kopelnik A, Tung P, et al. Age and aneurysm position predict patterns of left ventricular dysfunction after subarachnoid hemorrhage. J Am Soc Echocardiogr. 2005;18:168–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112:3314–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35:548–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Reinprecht A, Greher M, Wolfsberger S, Dietrich W, Illievich UM, Gruber A. Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med. 2003;31:1831–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Deibert E, Barzilai B, Braverman AC, et al. Clinical significance of elevated troponin I levels in patients with nontraumatic subarachnoid hemorrhage. J Neurosurg. 2003;98:741–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr. 2000;13:774–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Parekh N, Venkatesh B, Cross D, et al. Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol. 2000;36:1328–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Zaroff JG, Rordorf GA, Newell JB, Ogilvy CS, Levinson JR. Cardiac outcome in patients with subarachnoid hemorrhage and electrocardiographic abnormalities. Neurosurgery. 1999;44:34–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayer SA, Lin J, Homma S, et al. Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke. 1999;30:780–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Neil-Dwyer G, Walter P, Cruickshank JM. Beta-blockade benefits patients following a subarachnoid haemorrhage. Eur J Clin Pharmacol. 1985;28(Suppl):25–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Walter P, Neil-Dwyer G, Cruickshank JM. Beneficial effects of adrenergic blockade in patients with subarachnoid haemorrhage. Br Med J (Clin Res Ed). 1982;284:1661–4.CrossRefGoogle Scholar
  45. 45.
    Neil-Dwyer G, Walter P, Cruickshank JM, Doshi B, O’Gorman P. Effect of propranolol and phentolamine on myocardial necrosis after subarachnoid haemorrhage. Br Med J. 1978;2:990–2.PubMedCrossRefGoogle Scholar
  46. 46.
    Saito R, Takahashi T, Noshita N, et al. Takotsubo cardiomyopathy induced by dobutamine infusion during hypertensive therapy for symptomatic vasospasm after subarachnoid hemorrhage—case report. Neurol Med Chir (Tokyo). 2010;50:393–5.CrossRefGoogle Scholar
  47. 47.
    Mutoh T, Ishikawa T, Suzuki A, Yasui N. Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2010;13:331–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Busani S, Rinaldi L, Severino C, Cobelli M, Pasetto A, Girardis M. Levosimendan in cardiac failure after subarachnoid hemorrhage. J Trauma. 2010;68:E108–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Mutoh T, Kazumata K, Ishikawa T, Terasaka S. Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage. Stroke. 2009;40:2368–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Taccone FS, Lubicz B, Piagnerelli M, Van Nuffelen M, Vincent JL, De Backer D. Cardiogenic shock with stunned myocardium during triple-H therapy treated with intra-aortic balloon pump counterpulsation. Neurocrit Care. 2009;10:76–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim DH, Haney CL, Van Ginhoven G. Reduction of pulmonary edema after SAH with a pulmonary artery catheter-guided hemodynamic management protocol. Neurocrit Care. 2005;3:11–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Deehan SC, Grant IS. Haemodynamic changes in neurogenic pulmonary oedema: effect of dobutamine. Intensive Care Med. 1996;22:672–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Apostolides PJ, Greene KA, Zabramski JM, Fitzgerald JW, Spetzler RF. Intra-aortic balloon pump counterpulsation in the management of concomitant cerebral vasospasm and cardiac failure after subarachnoid hemorrhage: technical case report. Neurosurgery. 1996;38:1056–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Miller JA, Dacey RG Jr, Diringer MN. Safety of hypertensive hypervolemic therapy with phenylephrine in the treatment of delayed ischemic deficits after subarachnoid hemorrhage. Stroke. 1995;26:2260–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Levy ML, Rabb CH, Zelman V, Giannotta SL. Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm. J Neurosurg. 1993;79:494–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Sheikhazadi A, Gharehdaghi J. Survey of sudden death from aneurysmal subarachnoid hemorrhage in cadavers referred to Legal Medicine Organization of Tehran, 2001–2005. Am J Forensic Med Pathol. 2009;30:358–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Naidech AM, Bassin SL, Garg RK, et al. Cardiac troponin I and acute lung injury after subarachnoid hemorrhage. Neurocrit Care. 2009;11:177–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Kramer AH, Bleck TP, Dumont AS, Kassell NF, Olson C, Nathan B. Implications of early versus late bilateral pulmonary infiltrates in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2009;10:20–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Muroi C, Keller M, Pangalu A, Fortunati M, Yonekawa Y, Keller E. Neurogenic pulmonary edema in patients with subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2008;20:188–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34:617–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Kahn JM, Caldwell EC, Deem S, Newell DW, Heckbert SR, Rubenfeld GD. Acute lung injury in patients with subarachnoid hemorrhage: incidence, risk factors, and outcome. Crit Care Med. 2006;34:196–202.PubMedCrossRefGoogle Scholar
  62. 62.
    Vespa PM, Bleck TP. Neurogenic pulmonary edema and other mechanisms of impaired oxygenation after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2004;1:157–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Friedman JA, Pichelmann MA, Piepgras DG, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52:1025–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Smith WS, Matthay MA. Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest. 1997;111:1326–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Solenski NJ, Haley EC Jr, Kassell NF, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the multicenter cooperative aneurysm study. Crit Care Med. 1995;23:1007–17.PubMedCrossRefGoogle Scholar
  66. 66.
    van der Bilt IA, Hasan D, Vandertop WP, et al. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology. 2009;72:635–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Coghlan LA, Hindman BJ, Bayman EO, et al. Independent associations between electrocardiographic abnormalities and outcomes in patients with aneurysmal subarachnoid hemorrhage: findings from the intraoperative hypothermia aneurysm surgery trial. Stroke. 2009;40:412–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Hadeishi H, Mizuno M, Suzuki A, Yasui N. Hyperdynamic therapy for cerebral vasospasm. Neurol Med Chir (Tokyo). 1990;30:317–23.CrossRefGoogle Scholar
  69. 69.
    Joseph M, Ziadi S, Nates J, Dannenbaum M, Malkoff M. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003;53:1044–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Medlock MD, Dulebohn SC, Elwood PW. Prophylactic hypervolemia without calcium channel blockers in early aneurysm surgery. Neurosurgery. 1992;30:12–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Raabe A, Beck J, Keller M, Vatter H, Zimmermann M, Seifert V. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2005;103:974–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Treggiari-Venzi MM, Suter PM, Romand JA. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery. 2001;48:249–61.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicolas Bruder
    • 1
    Email author
  • Alejandro Rabinstein
    • 2
  • The Participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage
  1. 1.Department of Anesthesiology and Intensive Care, CHU TimoneUniversité de la MéditerranéeMarseilleFrance
  2. 2.Department of NeurologyMayo ClinicRochesterUSA

Personalised recommendations