Neurocritical Care

, Volume 15, Issue 3, pp 416–420

Proof of Concept: Endogenous Antiangiogenic Factors Predict the Occurrence of Symptomatic Vasospasm Post Subarachnoid Hemorrhage

  • Fernando D. Testai
  • Venkatesh Aiyagari
  • Maureen Hillmann
  • Sepideh Amin-Hanjani
  • Glyn Dawson
  • Philip Gorelick
Original Article

Abstract

Background

The pathogenesis of vasospasm (VS) post aneurysmal subarachnoid hemorrhage (SAH) is multifactorial and not completely understood. The authors hypothesize that circulating antiangiogenic factors play an important role in brain injury post SAH and that elevated levels predict the occurrence of symptomatic vasospasm.

Methods

In this study the authors measured the serum and cerebrospinal fluid (CSF) levels of soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt1) in controls and SAH patients within 48 h of the bleed. Patients were prospectively followed and subcategorized into those with (sVS) and without symptomatic vasospasm (no-sVS).

Results

Compared to healthy controls, SAH patients had higher CSF levels of sEng (0.037 vs. 0.251 ng/ml; P = 0.02) and sFlt1 (0.068 vs. 0.679 ng/ml; P = 0.001). In the subgroup analysis, sVS patients had higher CSF levels of sEng and sFlt1 than no-sVS patients (sEng: 0.380 vs. 0.159 ng/ml, P = 0.02; sFlt1: 1.277 vs. 0.343 ng/ml, P = 0.01). The serum levels of sEng and sFlt1 were not statistically different among the different groups.

Conclusions

Based on these results the authors conclude that elevated CSF levels of sFlt1 and sEng herald the occurrence of symptomatic VS post SAH.

Keywords

Subarachnoid hemorrhage Antiangiogenic factors Vasospasm 

References

  1. 1.
    Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.PubMedGoogle Scholar
  2. 2.
    Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS, Niklason L. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke. 2003;34:427–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller CA, Lombard FW, Wu CT, Hubbard CJ, Silbajoris L, Borel CO, Niklason LE. Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy. Neurocrit Care. 2006;5:215–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41:343–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Prehn JH, Backhauss C, Krieglstein J. Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab. 1993;13:521–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu Y, Culmsee C, Klumpp S, Krieglstein J. Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1, 2 signaling pathways. Neuroscience. 2004;123:897–906.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci. 2002;22:3898–909.PubMedGoogle Scholar
  9. 9.
    Bernabeu C, Conley BA, Vary CP. Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem. 2007;102:1375–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu HM, Huang Q, Yuan Y, Granger HJ. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271:H2735–9.PubMedGoogle Scholar
  12. 12.
    Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F, Perez-Barriocanal F, Rodriguez-Barbero A, Bernabeu C, Lopez-Novoa JM. Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J. 2004;18:609–11.PubMedGoogle Scholar
  13. 13.
    Sabri M, Ai J, Macdonald RL. Nitric oxide related pathophysiological changes following subarachnoid haemorrhage. Acta Neurochir Suppl. 2011;110:105–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Correlation between soluble endoglin, vascular endothelial growth factor receptor-1, and adipocytokines in preeclampsia. J Clin Endocrinol Metab. 2007;92:2672–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Molvarec A, Szarka A, Walentin S, Szucs E, Nagy B, Rigo J Jr. Circulating angiogenic factors determined by electrochemiluminescence immunoassay in relation to the clinical features and laboratory parameters in women with pre-eclampsia. Hypertens Res. 2010;33:892–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Quantakine. Human Endoglin/CD 15 Immunoassay. R&D Systems, Inc. 2009. http://www.rndsystems.com/pdf/dndg00.pdf. Accessed 04 July 2011.
  17. 17.
    Quantakine. Human Soluble VEGF R1/FLT-1 Immunoasssay. R&D Systems, Inc. 2009. http://www.rndsystems.com/pdf/DVR100B.pdf. Accessed 04 July 2011.
  18. 18.
    Cui X, Chopp M, Zacharek A, Zhang C, Roberts C, Chen J. Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice. Neuroscience. 2009;159:744–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Ata KA, Lennmyr F, Funa K, Olsson Y, Terent A. Expression of transforming growth factor-beta1,2,3 isoforms and type I and II receptors in acute focal cerebral ischemia: an immunohistochemical study in rat after transient and permanent occlusion of middle cerebral artery. Acta Neuropathol. 1999;97:447–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma X, Labinaz M, Goldstein J, Miller H, Keon WJ, Letarte M, O’Brien E. Endoglin is overexpressed after arterial injury and is required for transforming growth factor-beta-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol. 2000;20:2546–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Flood C, Akinwunmi J, Lagord C, Daniel M, Berry M, Jackowski A, Logan A. Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab. 2001;21:157–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106:829–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang JP, Liu HJ, Liu XF. VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg. 2010;23:149–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Yang JP, Liu HJ, Wang ZL, Cheng SM, Cheng X, Xu GL, Liu XF. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett. 2009;461:212–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Tong XK, Hamel E. Transforming growth factor-beta 1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase. Mol Pharmacol. 2007;72:1476–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Vodovotz Y, Bogdan C. Control of nitric oxide synthase expression by transforming growth factor-beta: implications for homeostasis. Prog Growth Factor Res. 1994;5:341–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156:965–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA. CPEP Study Group soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355:992–1005.PubMedCrossRefGoogle Scholar
  29. 29.
    Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, Ruefenacht D, Schmiedek P, Weidauer S, Pasqualin A, Macdonald RL. Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke. 2011;42:919–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH. American Heart Association Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fernando D. Testai
    • 1
  • Venkatesh Aiyagari
    • 1
  • Maureen Hillmann
    • 1
  • Sepideh Amin-Hanjani
    • 2
  • Glyn Dawson
    • 3
  • Philip Gorelick
    • 1
  1. 1.Department of Neurology of the University of Illinois at ChicagoChicagoUSA
  2. 2.Department of Neurosurgery of the University of Illinois at ChicagoChicagoUSA
  3. 3.Department of Pediatrics, Kennedy Center, University of ChicagoChicagoUSA

Personalised recommendations