Neurocritical Care

, Volume 12, Issue 1, pp 17–23 | Cite as

Phenylephrine but not Ephedrine Reduces Frontal Lobe Oxygenation Following Anesthesia-Induced Hypotension

  • Peter Nissen
  • Patrice Brassard
  • Thomas B. Jørgensen
  • Niels H. Secher
Original Article

Abstract

Background

Vasopressor agents are used to correct anesthesia-induced hypotension. We describe the effect of phenylephrine and ephedrine on frontal lobe oxygenation (ScO2) following anesthesia-induced hypotension.

Methods

Following induction of anesthesia by fentanyl (0.15 mg kg−1) and propofol (2.0 mg kg−1), 13 patients received phenylephrine (0.1 mg iv) and 12 patients received ephedrine (10 mg iv) to restore mean arterial pressure (MAP). Heart rate (HR), MAP, stroke volume (SV), cardiac output (CO), and frontal lobe oxygenation (ScO2) were registered.

Results

Induction of anesthesia was followed by a decrease in MAP, HR, SV, and CO concomitant with an elevation in ScO2. After administration of phenylephrine, MAP increased (51 ± 12 to 81 ± 13 mmHg; P < 0.001; mean ± SD). However, a 14% (from 70 ± 8% to 60 ± 7%) reduction in ScO2 (P < 0.05) followed with no change in CO (3.7 ± 1.1 to 3.4 ± 0.9 l min−1). The administration of ephedrine led to a similar increase in MAP (53 ± 9 to 79 ± 8 mmHg; P < 0.001), restored CO (3.2 ± 1.2 to 5.0 ± 1.3 l min−1), and preserved ScO2.

Conclusions

The utilization of phenylephrine to correct hypotension induced by anesthesia has a negative impact on ScO2 while ephedrine maintains frontal lobe oxygenation potentially related to an increase in CO.

Keywords

Cerebral autoregulation Cardiac output Arterial pressure Near infrared spectroscopy Drug effect 

Abbreviations

CBF

Cerebral blood flow

CO

Cardiac output

HR

Heart rate

MAP

Mean arterial pressure

NIRS

Near infrared spectroscopy

ScO2

Frontal lobe cerebral oxygenation

SV

Stroke volume

References

  1. 1.
    Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.PubMedGoogle Scholar
  2. 2.
    Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Nissen P, Pacino H, Frederiksen HJ, Novovic S, Secher NH. Near-infrared spectroscopy for evaluation of cerebral autoregulation during orthotopic liver transplantation. Neurocrit Care. 2009;11:235–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Kadoi Y, Saito S, Goto F, Fujita N. Decrease in jugular venous oxygen saturation during normothermic cardiopulmonary bypass predicts short-term postoperative neurologic dysfunction in elderly patients. J Am Coll Cardiol. 2001;38:1450–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Rogers AT, Stump DA, Gravlee GP, Prough DS, Angert KC, Wallenhaupt SL, et al. Response of cerebral blood flow to phenylephrine infusion during hypothermic cardiopulmonary bypass: influence of PaCO2 management. Anesthesiology. 1988;69:547–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J, Esler MD. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol 2009; 587:2589–2597Google Scholar
  8. 8.
    Dinenno FA, Eisenach JH, Dietz NM, Joyner MJ. Post-junctional alpha-adrenoceptors and basal limb vascular tone in healthy men. J Physiol. 2002;540:1103–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Brassard P, Seifert T, Secher NH. Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects? Br J Anaesth. 2009;102:800–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Pfister D, Strebel SP, Steiner LA. Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury. Eur J Anaesthesiol Suppl. 2008;42:98–103.CrossRefPubMedGoogle Scholar
  11. 11.
    Madsen PL, Skak C, Rasmussen A, Secher NH. Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg. 2000;90:489–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Jenstrup M, Ejlersen E, Mogensen T, Secher NH. A maximal central venous oxygen saturation (SvO2max) for the surgical patient. Acta Anaesthesiol Scand Suppl. 1995;107:29–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Greif R, Akca O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med. 2000;342:161–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol. 1993;74:2566–73.PubMedGoogle Scholar
  15. 15.
    Harms MP, Wesseling KH, Pott F, Jenstrup M, Van GJ, Secher NH, et al. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci (Lond). 1999;97:291–301.CrossRefGoogle Scholar
  16. 16.
    Jansen JR, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH. A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth. 2001;87:212–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Nissen P, van Lieshout JJ, Novovic S, Bundgaard-Nielsen M, Secher NH. Techniques of cardiac output measurement during liver transplantation: arterial pulse wave versus thermodilution. Liver Transpl. 2009;15:287–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol. 2005;90:437–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Skak C, Rasmussen A, Kirkegaard P, Secher NH. Cerebral oxygen saturation and blood flow during liver transplantation. Anesth Analg. 1997;84:730–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Plachky J, Hofer S, Volkmann M, Martin E, Bardenheuer HJ, Weigand MA. Regional cerebral oxygen saturation is a sensitive marker of cerebral hypoperfusion during orthotopic liver transplantation. Anesth Analg. 2004;99:344–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Grubhofer G, Lassnigg A, Manlik F, Marx E, Trubel W, Hiesmayr M. The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy. Anaesthesia. 1997;52:116–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Vatner SF, Braunwald E. Cardiovascular control mechanisms in the conscious state. N Engl J Med. 1975;293:970–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Nissen P, Nielsen HB, van Lieshout JJ, Secher NH. Frontal lobe oxygenation is maintained during hypotension following propofol-phentanyl anesthesia. AANA J. 2009;77:271–6.PubMedGoogle Scholar
  24. 24.
    Madsen P, Pott F, Olsen SB, Nielsen HB, Burcev I, Secher NH. Near-infrared spectrophotometry determined brain oxygenation during fainting. Acta Physiol Scand. 1998;162:501–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Madsen PL, Secher NH. Near-infrared oximetry of the brain. Prog Neurobiol. 1999;58:541–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Harms MP, Colier WN, Wieling W, Lenders JW, Secher NH, van Lieshout JJ. Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure. Stroke. 2000;31:1608–14.PubMedGoogle Scholar
  27. 27.
    Njemanze PC. Critical limits of pressure-flow relation in the human brain. Stroke. 1992;23:1743–7.PubMedGoogle Scholar
  28. 28.
    Kurihara K, Kikukawa A, Kobayashi A, Nakadate T. Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study. J Appl Physiol. 2007;103:1326–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Suzuki K, Asahina M, Suzuki A, Hattori T. Cerebral oxygenation monitoring for detecting critical cerebral hypoperfusion in patients with multiple system atrophy during the head-up tilt test. Intern Med. 2008;47:1681–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Hunt K, Tachtsidis I, Bleasdale-Barr K, Elwell C, Mathias C, Smith M. Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure. Physiol Meas. 2006;27:777–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Erkinaro T, Makikallio K, Acharya G, Pakkila M, Kavasmaa T, Huhta JC, et al. Divergent effects of ephedrine and phenylephrine on cardiovascular hemodynamics of near-term fetal sheep exposed to hypoxemia and maternal hypotension. Acta Anaesthesiol Scand. 2007;51:922–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Dunaway S, Yu Q, Larson DF. Effect of acute alpha adrenergic stimulation on cardiac function. Perfusion. 2007;22:289–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Pawelczyk JA, Hanel B, Pawelczyk RA, Warberg J, Secher NH. Leg vasoconstriction during dynamic exercise with reduced cardiac output. J Appl Physiol. 1992;73:1838–46.PubMedGoogle Scholar
  34. 34.
    Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB. Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol. 2008;586:2807–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, et al. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol. 2005;569:697–704.CrossRefPubMedGoogle Scholar
  36. 36.
    Ide K, Gullov AL, Pott F, van Lieshout JJ, Koefoed BG, Petersen P, et al. Middle cerebral artery blood velocity during exercise in patients with atrial fibrillation. Clin Physiol. 1999;19:284–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Secher NH, Seifert T, van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol. 2008;104:306–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Lavi S, Egbarya R, Lavi R, Jacob G. Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation. Circulation. 2003;107:1901–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Schleien CL, Koehler RC, Gervais H, Berkowitz ID, Dean JM, Michael JR, et al. Organ blood flow and somatosensory-evoked potentials during and after cardiopulmonary resuscitation with epinephrine or phenylephrine. Circulation. 1989;79:1332–42.PubMedGoogle Scholar
  40. 40.
    Schwartz AE, Minanov O, Stone JG, Adams DC, Sandhu AA, Pearson ME, et al. Phenylephrine increases cerebral blood flow during low-flow hypothermic cardiopulmonary bypass in baboons. Anesthesiology. 1996;85:380–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Strebel SP, Kindler C, Bissonnette B, Tschaler G, Deanovic D. The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology. 1998;89:67–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Ide K, Horn A, Secher NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol. 1999;87:1604–8.PubMedGoogle Scholar
  43. 43.
    Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev. 2004;46:243–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Nissen
    • 1
  • Patrice Brassard
    • 1
  • Thomas B. Jørgensen
    • 1
  • Niels H. Secher
    • 1
  1. 1.Department of AnesthesiaRigshospitalet 2041, University of CopenhagenCopenhagen ØDenmark

Personalised recommendations