Neurocritical Care

, Volume 12, Issue 1, pp 30–34

Comparison of Hematoma Shape and Volume Estimates in Warfarin Versus Non-Warfarin-Related Intracerebral Hemorrhage

  • Kevin N. Sheth
  • Tracy A. Cushing
  • Lauren Wendell
  • Michael H. Lev
  • Javier M. Romero
  • Kristin Schwab
  • Eric E. Smith
  • Steven M. Greenberg
  • Jonathan Rosand
  • Joshua N. Goldstein
Original Article



Hematoma volume is a major determinant of outcome in patients with intracerebral hemorrhage (ICH). Accurate volume measurements are critical for predicting outcome and are thought to be more difficult in patients with oral anticoagulation-related ICH (OAT-ICH) due to a higher frequency of irregular shape. We examined hematoma shape and methods of volume assessment in patients with OAT-ICH.


We performed a case–control analysis of a prospectively identified cohort of consecutive patients with ICH. We retrospectively reviewed 50 consecutive patients with OAT-ICH and 50 location-matched non-OAT-ICH controls. Two independent readers analyzed CT scans for hematoma shape and volume using both ABC/2 and ABC/3 methods. Readers were blinded to all clinical variables including warfarin status. Gold-standard ICH volumes were determined using validated computer-assisted planimetry.


Within this cohort, median INR in patients with OAT-ICH was 3.2. Initial ICH volume was not significantly different between non-OAT-ICH and OAT-ICH (35 ± 38 cc vs. 53 ± 56 cc, P = 0.4). ICH shape did not differ by anticoagulation status (round shape in 10% of OAT-ICH vs. 16% of non-OAT-ICH, P = 0.5). The ABC/3 calculation underestimated median volume by 9 (3–28) cc, while the ABC/2 calculation did so by 4 (0.8–12) cc.


Hematoma shape was not statistically significantly different in patients with OAT-ICH. Among bedside approaches, the standard ABC/2 method offers reasonable approximation of hematoma volume in OAT-ICH and non-OAT-ICH.


Cerebral hemorrhage Tomography X-ray computed Warfarin 


  1. 1.
    Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24(7):987–93.PubMedGoogle Scholar
  2. 2.
    Rost NS, Smith EE, Chang Y, Snider RW, Chanderraj R, Schwab K, et al. Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score. Stroke. 2008;39(8):2304–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Becker KJ, Baxter AB, Cohen WA, Bybee HM, Tirschwell DL, Newell DW, et al. Withdrawal of support in intracerebral hemorrhage may lead to self-fulfilling prophecies. Neurology. 2001;56(6):766–72.PubMedGoogle Scholar
  4. 4.
    Hemphill JC III, Newman J, Zhao S, Johnston SC. Hospital usage of early do-not-resuscitate orders and outcome after intracerebral hemorrhage. Stroke. 2004;35(5):1130–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Hemphill JC III, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.PubMedGoogle Scholar
  6. 6.
    Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Qureshi AI. Antihypertensive treatment of acute cerebral hemorrhage (ATACH): rationale and design. Neurocrit Care. 2007;6(1):56–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.PubMedGoogle Scholar
  9. 9.
    Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, Desmond PM, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40(4):1325–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg. 1994;80(1):51–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke. 1998;29(6):1160–6.PubMedGoogle Scholar
  12. 12.
    Zhan RY, Tong Y, Shen JF, Lang E, Preul C, Hempelmann RG, et al. Study of clinical features of amyloid angiopathy hemorrhage and hypertensive intracerebral hemorrhage. J Zhejiang Univ Sci. 2004;5(10):1262–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Huttner HB, Steiner T, Hartmann M, Kohrmann M, Juettler E, Mueller S, et al. Comparison of ABC/2 estimation technique to computer-assisted planimetric analysis in warfarin-related intracerebral parenchymal hemorrhage. Stroke. 2006;37(2):404–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Freeman WD, Barrett KM, Bestic JM, Meschia JF, Broderick DF, Brott TG. Computer-assisted volumetric analysis compared with ABC/2 method for assessing warfarin-related intracranial hemorrhage volumes. Neurocrit Care. 2008;9(3):307–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosand J, Eckman MH, Knudsen KA, Singer DE, Greenberg SM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med. 2004;164(8):880–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63(6):1059–64.PubMedGoogle Scholar
  17. 17.
    O’Donnell HC, Rosand J, Knudsen KA, Furie KL, Segal AZ, Chiu RI, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med. 2000;342(4):240–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Levine JM, Snider R, Finkelstein D, Gurol ME, Chanderraj R, Smith EE, et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7(1):58–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Hart RG. What causes intracerebral hemorrhage during warfarin therapy? Neurology. 2000;55(7):907–8.PubMedGoogle Scholar
  20. 20.
    Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Gebel JM, Sila CA, Sloan MA, Granger CB, Weisenberger JP, Green CL, et al. Comparison of the ABC/2 estimation technique to computer-assisted volumetric analysis of intraparenchymal and subdural hematomas complicating the GUSTO-1 trial. Stroke. 1998;29(9):1799–801.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Kevin N. Sheth
    • 1
  • Tracy A. Cushing
    • 3
  • Lauren Wendell
    • 2
  • Michael H. Lev
    • 4
  • Javier M. Romero
    • 4
  • Kristin Schwab
    • 2
  • Eric E. Smith
    • 5
  • Steven M. Greenberg
    • 2
  • Jonathan Rosand
    • 2
    • 5
  • Joshua N. Goldstein
    • 6
  1. 1.Division of NeurologyUniversity of Maryland Medical CenterBaltimoreUSA
  2. 2.Department of NeurologyMassachusetts General HospitalBostonUSA
  3. 3.Department of Emergency MedicineMt. Auburn HospitalBostonUSA
  4. 4.Department of RadiologyMassachusetts General HospitalBostonUSA
  5. 5.The Calgary Stroke Program, Department of Clinical NeurosciencesUniversity of CalgaryCalgaryCanada
  6. 6.Department of Emergency MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations