Advertisement

Neurocritical Care

, Volume 12, Issue 1, pp 35–42 | Cite as

Cerebral Autoregulation is Influenced by Carbon Dioxide Levels in Patients with Septic Shock

  • Fabio Silvio Taccone
  • Diego Castanares-Zapatero
  • Daliana Peres-Bota
  • Jean-Louis Vincent
  • Jacques Berre’
  • Christian Melot
Original Article

Abstract

Background

Altered brain perfusion may play an important role in the development of sepsis-associated encephalopathy. However, whether or not cerebral autoregulation (CA) is preserved in such condition has been debated. CA is dependent on cerebral vascular tone, the main determinant of which is the concentration of carbon dioxide (CO2). The purpose of this study was to evaluate the influence of PaCO2 on the cerebral autoregulatory capacity in patients with septic shock.

Methods

Using transcranial Doppler sonography recordings from the middle cerebral artery (MCA), we evaluated the static cerebral autoregulatory responses within the first 3 days of septic shock. Changes in cerebrovascular resistance (CVR) were calculated from the changes in the mean velocity in the MCA (VMCA, cm/s), in response to an increase in mean arterial pressure (MAP, mmHg) induced by vasopressors. The cerebral autoregulation index (CAI) was calculated as the ratio of the relative changes in CVR and MAP (CAI = ΔMAP%/ΔCVR%), with normal values ranging between 0 and 2.

Results

We studied 21 mechanically ventilated patients, with a baseline MAP of 65 ± 6 mmHg, a mean VMCA of 60 ± 20 cm/s and a median PaCO2 of 35 [28–49] mmHg. Fourteen of the 21 patients had impaired CA, including 7 of the 14 patients with a PaCO2 <40 mmHg and all 7 patients with a PaCO2 >40 mmHg (Fisher’s exact test, P = 0.046).

Conclusions

According to these data, CA is impaired in the majority of patients with septic shock, especially in the presence of hypercapnia.

Keywords

Sepsis Encephalopathy Cerebral blood flow Carbon dioxide Vascular reactivity 

References

  1. 1.
    Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA. The encephalopathy associated with septic illness. Clin Invest Med. 1990;13:297–304.PubMedGoogle Scholar
  3. 3.
    Eggers V, Schilling A, Kox WJ, Spies C. Septic encephalopathy. Diagnosis und therapy. Anaesthesist. 2003;52:294–303.CrossRefPubMedGoogle Scholar
  4. 4.
    Zauner C, Gendo A, Kramer L, et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med. 2002;30:1136–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol. 1992;9:145–52.PubMedGoogle Scholar
  6. 6.
    Wratten ML. Therapeutic approaches to reduce systemic inflammation in septic-associated neurologic complications. Eur J Anaesthesiol Suppl. 2008;42:1–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Barichello T, Martins MR, Reinke A, et al. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med. 2005;33:221–3.CrossRefPubMedGoogle Scholar
  8. 8.
    Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med. 2007;33:941–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Goris RJ. Mediators of multiple organ failure. Intensive Care Med. 1990;16(Suppl 3):S192–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Davies DC. Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat. 2002;200:639–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond). 1999;96:461–6.CrossRefGoogle Scholar
  12. 12.
    Freund HR, Muggia-Sullam M, Peiser J, Melamed E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J Surg Res. 1985;38:267–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Sharshar T, Gray F, Lorin DLG, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–805.CrossRefPubMedGoogle Scholar
  14. 14.
    Wijdicks EF, Stevens M. The role of hypotension in septic encephalopathy following surgical procedures. Arch Neurol. 1992;49:653–6.PubMedGoogle Scholar
  15. 15.
    Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G. The neuropathology of septic shock. Brain Pathol. 2004;14:21–33.PubMedGoogle Scholar
  16. 16.
    Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984;15:413–6.PubMedGoogle Scholar
  17. 17.
    Pfister D, Siegemund M, Dell-Kuster S, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63.CrossRefPubMedGoogle Scholar
  18. 18.
    Matta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth. 1996;76:790–4.PubMedGoogle Scholar
  19. 19.
    Ainslie PN, Celi L, McGrattan K, Peebles K, Ogoh S. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res. 2008;1230:115–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Xie A, Skatrud JB, Morgan B, et al. Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans. J Physiol. 2006;577:319–29.CrossRefPubMedGoogle Scholar
  21. 21.
    Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry. 1965;28:449–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Thees C, Kaiser M, Scholz M, et al. Cerebral haemodynamics, carbon dioxide reactivity during sepsis syndrome. Crit Care. 2007;11:R123.CrossRefPubMedGoogle Scholar
  23. 23.
    van Lieshout JJ, Wieling W, Karemaker JM, Secher NH. Syncope, cerebral perfusion, and oxygenation. J Appl Physiol. 2003;94:833–48.PubMedGoogle Scholar
  24. 24.
    Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.PubMedGoogle Scholar
  25. 25.
    Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24.PubMedGoogle Scholar
  28. 28.
    Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMedGoogle Scholar
  30. 30.
    Detriche O, Berre J, Massaut J, Vincent JL. The Brussels sedation scale: use of a simple clinical sedation scale can avoid excessive sedation in patients undergoing mechanical ventilation in the intensive care unit. Br J Anaesth. 1999;83:698–701.PubMedGoogle Scholar
  31. 31.
    Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma. 1992;9(Suppl 1):S333–48.PubMedGoogle Scholar
  32. 32.
    Forster A, Juge O, Morel D. Effects of midazolam on cerebral hemodynamics and cerebral vasomotor responsiveness to carbon dioxide. J Cereb Blood Flow Metab. 1983;3:246–9.PubMedGoogle Scholar
  33. 33.
    de Nadal M, Munar F, Poca MA, Sahuquillo J, Garnacho A, Rossello J. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation. Anesthesiology. 2000;92:11–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Moppett IK, Sherman RW, Wild MJ, Latter JA, Mahajan RP. Effects of norepinephrine and glyceryl trinitrate on cerebral haemodynamics: transcranial Doppler study in healthy volunteers. Br J Anaesth. 2008;100:240–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA. 1996;275:470–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Martin CM, Sibbald WJ. Modulation of hemodynamics and organ blood flow by nitric oxide synthase inhibition is not altered in normotensive, septic rats. Am J Respir Crit Care Med. 1994;150:1539–44.PubMedGoogle Scholar
  37. 37.
    Raper RF, Sibbald WJ, Hobson J, Rutledge FS. Effect of PGE1 on altered distribution of regional blood flows in hyperdynamic sepsis. Chest. 1991;100:1703–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Meyer J, Hinder F, Stothert J Jr, et al. Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition. J Appl Physiol. 1994;76:2785–93.PubMedGoogle Scholar
  39. 39.
    Ekstrom-Jodal B, Haggendal E, Larsson LE. Cerebral blood flow and oxygen uptake in endotoxic shock. An experimental study in dogs. Acta Anaesthesiol Scand. 1982;26:163–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med. 1989;17:399–403.PubMedCrossRefGoogle Scholar
  41. 41.
    Maekawa T, Fujii Y, Sadamitsu D, et al. Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med. 1991;9:139–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17:913–5.PubMedGoogle Scholar
  43. 43.
    Poulin MJ, Robbins PA. Indexes of flow and cross-sectional area of the middle cerebral artery using Doppler ultrasound during hypoxia and hypercapnia in humans. Stroke. 1996;27:2244–50.PubMedGoogle Scholar
  44. 44.
    Parker JL, Emerson TE Jr. Cerebral hemodynamics, vascular reactivity, and metabolism during canine endotoxin shock. Circ Shock. 1977;4:41–53.PubMedGoogle Scholar
  45. 45.
    Hinkelbein J, Schroeck H, Peterka A, Schubert C, Kuschinsky W, Kalenka A. Local cerebral blood flow is preserved in sepsis. Curr Neurovasc Res. 2007;4:39–47.CrossRefPubMedGoogle Scholar
  46. 46.
    Moller K, Strauss GI, Qvist J, et al. Cerebral blood flow and oxidative metabolism during human endotoxemia. J Cereb Blood Flow Metab. 2002;22:1262–70.CrossRefPubMedGoogle Scholar
  47. 47.
    Ackerman RH, Zilkha E, Bull JW, et al. The relationship of the CO2 reactivity of cerebral vessels to blood pressure and mean resting blood flow. Neurology. 1973;23:21–6.PubMedGoogle Scholar
  48. 48.
    Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27:1231–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Bowie RA, O’Connor PJ, Mahajan RP. Cerebrovascular reactivity to carbon dioxide in sepsis syndrome. Anaesthesia. 2003;58:261–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Pickard JD, Matheson M, Patterson J, Wyper D. Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J Neurosurg. 1980;53:305–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.PubMedGoogle Scholar
  52. 52.
    Booke M, Westphal M, Hinder F, Traber LD, Traber DL. Cerebral blood flow is not altered in sheep with Pseudomonas aeruginosa sepsis treated with norepinephrine or nitric oxide synthase inhibition. Anesth Analg. 2003;96:1122–8, table.PubMedGoogle Scholar
  53. 53.
    Pedersen M, Brandt CT, Knudsen GM, et al. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab. 2008;28:126–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Smith SM, Padayachee S, Modaresi KB, Smithies MN, Bihari DJ. Cerebral blood flow is proportional to cardiac index in patients with septic shock. J Crit Care. 1998;13:104–9.CrossRefPubMedGoogle Scholar
  55. 55.
    McCulloch TJ, Visco E, Lam AM. Graded hypercapnia and cerebral autoregulation during sevoflurane or propofol anesthesia. Anesthesiology. 2000;93:1205–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Vavilala MS, Lee LA, Boddu K, et al. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med. 2004;5:257–63.CrossRefPubMedGoogle Scholar
  57. 57.
    Strauss GI. The effect of hyperventilation upon cerebral blood flow and metabolism in patients with fulminant hepatic failure. Dan Med Bull. 2007;54:99–111.PubMedGoogle Scholar
  58. 58.
    Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995;3:2–32.PubMedGoogle Scholar
  59. 59.
    Avontuur JA, Bruining HA, Ince C. Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res. 1997;35:368–76.CrossRefPubMedGoogle Scholar
  60. 60.
    Avontuur JA, Tutein Nolthenius RP, van Bodegom JW, Bruining HA. Prolonged inhibition of nitric oxide synthesis in severe septic shock: a clinical study. Crit Care Med. 1998;26:660–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee WY, Mokhlesi B. Diagnosis and management of obesity hypoventilation syndrome in the ICU. Crit Care Clin. 2008;24:533–49. vii.CrossRefPubMedGoogle Scholar
  62. 62.
    Pieretti P, Alifano M, Roche N, et al. Predictors of an appropriate admission to an ICU after a major pulmonary resection. Respiration. 2006;73:157–65.PubMedGoogle Scholar
  63. 63.
    Chakrabarti B, Angus RM. Ventilatory failure on acute take. Clin Med. 2005;5:630–4.PubMedGoogle Scholar
  64. 64.
    Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83:980–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Matta BF, Lam AM, Strebel S, Mayberg TS. Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth. 1995;74:159–63.CrossRefPubMedGoogle Scholar
  66. 66.
    Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.PubMedGoogle Scholar
  67. 67.
    Baumbach GL, Heistad DD. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13:303–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Peebles K, Celi L, McGrattan K, Murrell C, Thomas K, Ainslie PN. Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol. 2007;584:347–57.CrossRefPubMedGoogle Scholar
  69. 69.
    Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Fabio Silvio Taccone
    • 1
  • Diego Castanares-Zapatero
    • 1
  • Daliana Peres-Bota
    • 1
  • Jean-Louis Vincent
    • 1
  • Jacques Berre’
    • 1
  • Christian Melot
    • 1
  1. 1.Department of Intensive CareErasme University Hospital, Université Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations