Neurocritical Care

, Volume 11, Issue 1, pp 97–100

Intra-arterial Air Thrombogenesis after Cerebral Air Embolism Complicating Lower Extremity Sclerotherapy

  • T. M. Leslie-Mazwi
  • Laura L. Avery
  • John R. Sims
Practical Pearl

Abstract

Background

Cerebral arterial gas embolism is a potentially life-threatening event. Intraarterial air can occlude blood flow directly or cause thrombosis. Sclerotherapy is an extremely rare cause of cerebral arterial gas embolism.

Method

Case-report.

Results

A 38-year-old female suffered acute onset of a left middle cerebral artery (LMCA) syndrome with an NIH stroke score of 11 approximately ten minutes after lower extremity sclerotherapy. CT angiogram demonstrated LMCA intraarterial air. Patient fully recovered after hyperbaric oxygen treatment with complete resolution of intraarterial air. However, thrombus replaced intraarterial air despite anticoagulation with heparin.

Conclusion

We provide radiological evidence of hyperbaric oxygen therapy resolving intraarterial air but also demonstrate the thrombogenic potential of this procedural complication.

Keywords

Hyperbaric oxygen Cerebral infarction Thrombosis Arterial gas embolism Sclerotherapy Complication 

References

  1. 1.
    Frullini A, Cavezzi A. Sclerosing foam in the treatment of varicose veins and telangiectases: history and analysis of safety and complications. Dermatol Surg. 2002;28:11–5. doi:10.1046/j.1524-4725.2002.01182.x.PubMedCrossRefGoogle Scholar
  2. 2.
    Brand FN, Dannenberg AL, Abbott RD, Kannel WB. The epidemiology of varicose veins: the framingham study. Am J Prev Med. 1988;4:96–101.PubMedGoogle Scholar
  3. 3.
    Guex JJ, Allaert FA, Gillet JL, Chleir F. Immediate and midterm complications of sclerotherapy: report of a prospective multicenter registry of 12, 173 sclerotherapy sessions. Dermatol Surg. 2005;31:123–8. discussion 128.PubMedGoogle Scholar
  4. 4.
    Ceulen RP, Sommer A, Vernooy K. Microembolism during foam sclerotherapy of varicose veins. N Engl J Med. 2008;358:1525–6. doi:10.1056/NEJMc0707265.PubMedCrossRefGoogle Scholar
  5. 5.
    Rush JE, Wright DD. More on microembolism and foam sclerotherapy. N Engl J Med. 2008;359:656–7. doi:10.1056/NEJMc080996. author reply 657.PubMedCrossRefGoogle Scholar
  6. 6.
    Forlee MV, Grouden M, Moore DJ, Shanik G. Stroke after varicose vein foam injection sclerotherapy. J Vasc Surg. 2006;43:162–4. doi:10.1016/j.jvs.2005.09.032.PubMedCrossRefGoogle Scholar
  7. 7.
    Meier B, Lock JE. Contemporary management of patent foramen ovale. Circulation. 2003;107:5–9. doi:10.1161/01.CIR.0000046073.34261.C1.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler BD, Laine GA, Leiman BC, Warters D, Kurusz M, Sutton T, et al. Effect of the trendelenburg position on the distribution of arterial air emboli in dogs. Ann Thorac Surg. 1988;45:198–202.PubMedCrossRefGoogle Scholar
  9. 9.
    Geissler HJ, Allen SJ, Mehlhorn U, Davis KL, Morris WP, Butler BD. Effect of body repositioning after venous air embolism. An echocardiographic study. Anesthesiology. 1997;86:710–7. doi:10.1097/00000542-199703000-00024.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez RA, Cornel G, Weerasena NA, Pham B, Splinter WM. Effect of trendelenburg head position during cardiac deairing on cerebral microemboli in children: a randomized controlled trial. J Thorac Cardiovasc Surg. 2001;121:3–9. doi:10.1067/mtc.2001.111177.PubMedCrossRefGoogle Scholar
  11. 11.
    van Hulst RA, Drenthen J, Haitsma JJ, Lameris TW, Visser GH, Klein J, et al. Effects of hyperbaric treatment in cerebral air embolism on intracranial pressure, brain oxygenation, and brain glucose metabolism in the pig. Crit Care Med. 2005;33:841–6. doi:10.1097/01.CCM.0000159529.26114.CA.PubMedCrossRefGoogle Scholar
  12. 12.
    Eckmann DM, Diamond SL. Surfactants attenuate gas embolism-induced thrombin production. Anesthesiology. 2004;100:77–84. doi:10.1097/00000542-200401000-00015.PubMedCrossRefGoogle Scholar
  13. 13.
    Muth CM, Shank ES. Gas embolism. N Engl J Med. 2000;342:476–82. doi:10.1056/NEJM200002173420706.PubMedCrossRefGoogle Scholar
  14. 14.
    Tovar EA, Del Campo C, Borsari A, Webb RP, Dell JR, Weinstein PB. Postoperative management of cerebral air embolism: gas physiology for surgeons. Ann Thorac Surg. 1995;60:1138–42. doi:10.1016/0003-4975(95)00531-O.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamptom N. Hyperbaric oxygen therapy. 1999 committee report. Undersea and Hyperbaric Medical Society; 1999. p. 3–8.Google Scholar
  16. 16.
    Philp RB, Inwood MJ, Warren BA. Interactions between gas bubbles and components of the blood: implications in decompression sickness. Aerosp Med. 1972;43:946–53.PubMedGoogle Scholar
  17. 17.
    Warren BA, Philp RB, Inwood MJ. The ultrastructural morphology of air embolism: platelet adhesion to the interface and endothelial damage. Br J Exp Pathol. 1973;54:163–72.PubMedGoogle Scholar
  18. 18.
    Kochanek PM, Dutka AJ, Hallenbeck JM. Indomethacin, prostacyclin, and heparin improve postischemic cerebral blood flow without affecting early postischemic granulocyte accumulation. Stroke. 1987;18:634–7.PubMedGoogle Scholar
  19. 19.
    Ryu KH, Hindman BJ, Reasoner DK, Dexter F. Heparin reduces neurological impairment after cerebral arterial air embolism in the rabbit. Stroke. 1996;27:303–9. discussion 310.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • T. M. Leslie-Mazwi
    • 1
  • Laura L. Avery
    • 2
  • John R. Sims
    • 3
  1. 1.Department of NeurologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Emergency RadiologyMassachusetts General HospitalBostonUSA
  3. 3.Departments of Neurology, Neurosurgery and RadiologyMassachusetts General HospitalCharlestownUSA

Personalised recommendations