Advertisement

Neurocritical Care

, Volume 10, Issue 3, pp 368–372 | Cite as

The Utility of Conductive Plastic Electrodes in Prolonged ICU EEG Monitoring

  • Rohit R. Das
  • Brendan P. Lucey
  • Sherry H.-Y. Chou
  • Patricio S. Espinosa
  • Amir A. Zamani
  • Barbara A. Dworetzky
  • Edward B. Bromfield
  • Jong Woo LeeEmail author
Original Article

Abstract

We investigated the feasibility and utilization of conductive plastic electrodes (CPEs) in patients undergoing continuous video-electroencephalographic (EEG) monitoring in the intensive care unit (ICU), and assessed the quality of brain magnetic resonance imaging (MRI) and computed tomography (CT) images obtained during this period. A total of 54 patients were monitored. Seizures were recorded in 16 patients. Twenty-five patients had neuroimaging performed with electrodes in place; 15 MRI and 23 CT scans were performed. All patients had excellent quality anatomical images without clinically significant artifacts, and without any signs or symptoms that raised safety concerns. Recording quality of the EEG was indistinguishable to that achieved with standard gold electrodes. The use of CPEs allowed for uninterrupted EEG recording of patients who required urgent neuroimaging, and decreased the amount of time spent by the technologists required to remove and reattach leads.

Keywords

MRI CT Conductive plastic electrodes EEG ICU monitoring 

References

  1. 1.
    Scheuer ML. Continuous EEG monitoring in the intensive care unit. Epilepsia. 2002;43 Suppl 3:114–27. doi: 10.1046/j.1528-1157.43.s.3.7.x.PubMedCrossRefGoogle Scholar
  2. 2.
    Privitera M, Hoffman M, Moore JL, Jester D. EEG detection of nontonic-clonic status epilepticus in patients with altered consciousness. Epilepsy Res. 1994;18:155–66. doi: 10.1016/0920-1211(94)90008-6.PubMedCrossRefGoogle Scholar
  3. 3.
    Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.PubMedGoogle Scholar
  4. 4.
    Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke. 2005;36:583–7. doi: 10.1161/01.STR.0000141936.36596.1e.PubMedCrossRefGoogle Scholar
  5. 5.
    Stevens TK, Ives JR, Klassen LM, Bartha R. MR compatibility of EEG scalp electrodes at 4 tesla. J Magn Reson Imaging. 2007;25:872–7. doi: 10.1002/jmri.20872.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhavaraju NC, Nagaraddi V, Chetlapalli SR, Osorio I. Electrical and thermal behavior of non-ferrous noble metal electrodes exposed to MRI fields. Magn Reson Imaging. 2002;20:351–7. doi: 10.1016/S0730-725X(02)00506-4.PubMedCrossRefGoogle Scholar
  7. 7.
    Bonmassar G, Hadjikhani N, Ives JR, Hinton D, Belliveau JW. Influence of EEG electrodes on the BOLD fMRI signal. Hum Brain Mapp. 2001;14:108–15. doi: 10.1002/hbm.1045.PubMedCrossRefGoogle Scholar
  8. 8.
    Mullinger K, Debener S, Coxon R, Bowtell R. Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla. Int J Psychophysiol. 2008;67:178–88. doi: 10.1016/j.ijpsycho.2007.06.008.PubMedCrossRefGoogle Scholar
  9. 9.
    Silberbusch MA, Rothman MI, Bergey GK, Zoarski GH, Zagardo MT. Subdural grid implantation for intracranial EEG recording: CT and MR appearance. AJNR Am J Neuroradiol. 1998;19:1089–93.PubMedGoogle Scholar
  10. 10.
    Ives JR, Keenan JP, Schomer DL, Pascual-Leone A. EEG recording during repetitive transcranial magnetic stimulation (rTMS). Neurology. 1998;50:A167.Google Scholar
  11. 11.
    Mirsattari SM, Lee DH, Jones D, Bihari F, Ives JR. MRI compatible EEG electrode system for routine use in the epilepsy monitoring unit and intensive care unit. Clin Neurophysiol. 2004;115:2175–80. doi: 10.1016/j.clinph.2004.04.011.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol. 2001;112:536–44. doi: 10.1016/S1388-2457(00)00533-2.PubMedCrossRefGoogle Scholar
  13. 13.
    Falco C, Sebastiano F, Cacciola L, et al. Scalp electrode placement by EC2 adhesive paste in long-term video-EEG monitoring. Clin Neurophysiol. 2005;116:1771–3. doi: 10.1016/j.clinph.2005.04.012.PubMedCrossRefGoogle Scholar
  14. 14.
    Young B, Blais R, Campbell V, et al. Vapors from collodion and acetone in an EEG laboratory. J Clin Neurophysiol. 1993;10:108–10. doi: 10.1097/00004691-199301000-00012.PubMedCrossRefGoogle Scholar
  15. 15.
    Hirsch LJ. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol. 2004;21:332–40.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Rohit R. Das
    • 1
  • Brendan P. Lucey
    • 1
  • Sherry H.-Y. Chou
    • 2
  • Patricio S. Espinosa
    • 1
  • Amir A. Zamani
    • 3
  • Barbara A. Dworetzky
    • 1
  • Edward B. Bromfield
    • 1
  • Jong Woo Lee
    • 1
    Email author
  1. 1.Division of Epilepsy, Department of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Division of Cerebrovascular Diseases and Neurocritical Care, Department of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Division of Neuroradiology, Department of RadiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations