Neurocritical Care

, Volume 9, Issue 1, pp 125–138

Inflammation in Acute Ischemic Stroke and its Relevance to Stroke Critical Care

  • Hedley C. A. Emsley
  • Craig J. Smith
  • Pippa J. Tyrrell
  • Stephen J. Hopkins
Review article

Abstract

Thrombolysis heralded a new era of acute intervention for ischemic stroke, accompanied by an increasing need for comprehensive acute critical care support. There remains the prospect of novel cerebral protection strategies. Cerebral ischemia initiates a complex cascade of events at genomic, molecular, and cellular levels, and inflammation is important in this cascade, both in the CNS and in the periphery. Closely linked events are induction of a classic acute phase protein response, activation of the hypothalamic-pituitary-adrenal axis (HPAA) and sympathetic nervous system (SNS), and rise in body temperature, all of which appear to importantly influence the outcome. Thrombolysis aside, various therapeutic strategies have been trialed without success recently, primarily directed at influencing neuronal activity and survival directly. Inflammation itself offers an attractive target, mainly because of its potential to exacerbate the spread of damage to the ischemic penumbra. A promising novel therapeutic approach is the interleukin-1 receptor antagonist (IL-1ra), which limits the action of the cytokine IL-1, a pivotal mediator in the pathophysiology of acute neurodegeneration. Critical care has much to offer some patients after acute ischemic stroke, including the delivery of acute interventions, often with very short therapeutic time windows, physiological support, and the management of complications. We discuss inflammation and its mediators in acute ischemic stroke, the systemic stress, and acute phase protein responses to acute ischemic stroke, how inflammation is relevant in deteriorating ischemic stroke, the impact of physiological variables, and both current and emerging interventions for acute ischemic stroke.

Keywords

Acute ischemic stroke Inflammation Critical care 

References

  1. 1.
    Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005;5(8):629–40.PubMedGoogle Scholar
  2. 2.
    Emsley HCA, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ, Tyrrell PJ, for the IL-1ra in Acute Stroke Investigators. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry 2005;76(10):1366–72.PubMedGoogle Scholar
  3. 3.
    Baron JC. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001;11 Suppl 1:2–8.PubMedGoogle Scholar
  4. 4.
    Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 1999;10:119–30.PubMedGoogle Scholar
  5. 5.
    Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007;184(1–2):53–68.PubMedGoogle Scholar
  6. 6.
    Hopkins SJ. The pathophysiological role of cytokines. Leg Med (Tokyo) 2003;5 Suppl 1:S45–57.Google Scholar
  7. 7.
    Emsley HCA, Tyrrell PJ. Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 2002;22:1399–419.PubMedGoogle Scholar
  8. 8.
    McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007;27(16):4403–12.PubMedGoogle Scholar
  9. 9.
    DeGraba TJ, Sirén A-L, Penix L, McCarron RM, Hargraves R, Sood S, Pettigrew KD, Hallenbeck JM. Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke 1998;29:1405–10.PubMedGoogle Scholar
  10. 10.
    del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 2000;10:95–112.PubMedCrossRefGoogle Scholar
  11. 11.
    Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 1998;18(11):1163–72 (Review).PubMedGoogle Scholar
  12. 12.
    Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 2002;39:279–91.PubMedGoogle Scholar
  13. 13.
    Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res 1997;744:189–98.Google Scholar
  14. 14.
    Kato H, Walz W. The initiation of the microglial response. Brain Pathol 2000;10:137–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Rothwell NJ. Cytokines—killers in the brain? J Physiol 1999;514:3–17.PubMedGoogle Scholar
  16. 16.
    Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000;20:53–65.PubMedGoogle Scholar
  17. 17.
    Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997;26:77–82.PubMedGoogle Scholar
  18. 18.
    Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, Ludolph AC, Reske SN. In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 2000;11:2957–60.PubMedGoogle Scholar
  19. 19.
    Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 2005;24(2):591–5.PubMedGoogle Scholar
  20. 20.
    Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 2004;127(7):1670–7.PubMedGoogle Scholar
  21. 21.
    Saleh A, Schroeter M, Ringelstein A, Hartung HP, Siebler M, Modder U, Jander S. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007;38(10):2733–7.PubMedGoogle Scholar
  22. 22.
    Pozzilli C, Lenzi GL, Argentino C, Bozzao L, Rasura M, Giubilei F, Fieschi C. Peripheral white blood cell count in cerebral ischemic infarction. Acta Neurol Scand 1985;71:396–400.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Erasmo E, Acca M, Celi FS, Mazzuoli G. Correlation between plasma fibrinogen levels and white blood cell count after cerebral infarction. Stroke 1991;22:1089.PubMedGoogle Scholar
  24. 24.
    Pozzilli C, Lenzi GL, Argentino C, Carolei A, Rasura M, Signore A, Bozzao L, Pozzilli P. Imaging of leukocytic infiltration in human cerebral infarcts. Stroke 1985;16:251–5.PubMedGoogle Scholar
  25. 25.
    Wang P-Y, Kao C-H, Mui M-Y, Wang S-J. Leukocyte infiltration in acute hemispheric stroke. Stroke 1993;24:236–40.PubMedGoogle Scholar
  26. 26.
    Akopov SE, Simonian NA, Grigorian GS. Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 1996;27:1739–43.PubMedGoogle Scholar
  27. 27.
    Price CJ, Menon DK, Peters AM, Ballinger JR, Barber RW, Balan KK, Lynch A, Xuereb JH, Fryer T, Guadagno JV, Warburton EA. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke 2004;35(7):1659–64.PubMedGoogle Scholar
  28. 28.
    Adams RD, Sidman RL. Introduction to neuropathology. New York: McGraw-Hill Inc.; 1968. p. 172–5.Google Scholar
  29. 29.
    Sörnäs R, Östlund H, Müller R. Cerebrospinal fluid cytology after stroke. Arch Neurol 1972;26:489–501.PubMedGoogle Scholar
  30. 30.
    Jean WC, Spellman SR, Nussbaum ES, Low WC. Reperfusion injury after focal cerebral ischemia: role of inflammation and the therapeutic horizon. Neurosurgery 1998;43:1382–97.PubMedGoogle Scholar
  31. 31.
    Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, Yao C, Dave JR, Tortella FC. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 2002;22(9):1068–79.PubMedGoogle Scholar
  32. 32.
    Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994;25(1):202–11.PubMedGoogle Scholar
  33. 33.
    Haring HP, Berg EL, Tsurushita N, Tagaya M, del Zoppo GJ. E-selectin appears in nonischemic tissue during experimental focal cerebral ischemia. Stroke 1996;27(8):1386–91.PubMedGoogle Scholar
  34. 34.
    del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991;22(10):1276–83.PubMedGoogle Scholar
  35. 35.
    Hopkins SJ. Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration. Acta Biomed 2007;78 Suppl 1:231–47.PubMedGoogle Scholar
  36. 36.
    Kwan J, Hand P. Infection after acute stroke is associated with poor short-term outcome. Acta Neurol Scand 2007;115(5):331–8.PubMedGoogle Scholar
  37. 37.
    Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 2007;38(3):1097–103.PubMedGoogle Scholar
  38. 38.
    Woiciechowsky C, Schoning B, Lanksch WR, Volk HD, Docke WD. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 1999;77(11):769–80.PubMedGoogle Scholar
  39. 39.
    Meyer JS, Stoica E, Pascu I, Shimazu K, Hartmann A. Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and haemorrhage. Brain 1973;96(2):277–88.PubMedGoogle Scholar
  40. 40.
    Myers MG, Norris JW, Hachniski VC, Sole MJ. Plasma norepinephrine in stroke. Stroke 1981;12(2):200–4.PubMedGoogle Scholar
  41. 41.
    Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001;57(5):833–8.PubMedGoogle Scholar
  42. 42.
    Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 2004;15(2):357–61.PubMedGoogle Scholar
  43. 43.
    Ay H, Koroshetz WJ, Benner T, Vangel MG, Melinosky C, Arsava EM, Ayata C, Zhu M, Schwamm LH, Sorensen AG. Neuroanatomic correlates of stroke-related myocardial injury. Neurology 2006;66(9):1325–9.PubMedGoogle Scholar
  44. 44.
    Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, Gomez-Choco M, Torres F, Planas AM. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci 2007;252(1):29–35.PubMedGoogle Scholar
  45. 45.
    Olsson T. Urinary free cortisol excretion shortly after ischaemic stroke. J Intern Med 1990;228(2):177–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Fassbender K, Schmidt R, Mößner R, Daffertshofer M, Hennerici M. Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke: relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke 1994;25:1105–8.PubMedGoogle Scholar
  47. 47.
    Emsley HCA, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, Hallenbeck JM, del Zoppo GJ, Rothwell NJ, Tyrrell PJ, Hopkins SJ. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmunol 2003;139:93–101.PubMedGoogle Scholar
  48. 48.
    O’Neill PA, Davies I, Fullerton KJ, Bennett D. Stress hormone and blood glucose response following acute stroke in the elderly. Stroke 1991;22(7):842–7.PubMedGoogle Scholar
  49. 49.
    Murros K, Fogelholm R, Kettunen S, Vuorela AL, Valve J. Blood glucose, glycosylated haemoglobin, and outcome of ischemic brain infarction. J Neurol Sci 1992;111(1):59–64.PubMedGoogle Scholar
  50. 50.
    Slowik A, Turaj W, Pankiewicz J, Dziedzic T, Szermer P, Szczudlik A. Hypercortisolemia in acute stroke is related to the inflammatory response. J Neurol Sci 2002;196(1–2):27–32.PubMedGoogle Scholar
  51. 51.
    Smith CJ, Emsley HCA, Gavin CM, Georgiou RF, Vail A, Barberan EM, del Zoppo GJ, Hallenbeck JM, Rothwell NJ, Hopkins SJ, Tyrrell PJ. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 2004;4:2.PubMedGoogle Scholar
  52. 52.
    Makikallio A, Juha K, Timo M, Mikko T, Olli V, Kyosti S, Heikki H, Vilho M. Neurohormonal activation in ischemic stroke: effects of acute phase disturbances on long-term mortality. Curr Neurovasc Res 2007;4(3):170–5.Google Scholar
  53. 53.
    Olsson T, Marklund N, Gustafson Y, Näsman B. Abnormalities at different levels of the hypothalamic-pituitary-adrenocortical axis early after stroke. Stroke 1992;23:1573–6.PubMedGoogle Scholar
  54. 54.
    Johansson Å, Olsson T, Carlberg B, Karlsson K, Fagerlund M. Hypercortisolism after stroke—partly cytokine-mediated? J Neurol Sci 1997;147:43–7.PubMedGoogle Scholar
  55. 55.
    Szczudlik A, Dziedzic T, Bartus S, Slowik A, Kieltyka A. Serum interleukin-6 predicts cortisol release in acute stroke patients. J Endocrinol Invest 2004;27(1):37–41.PubMedGoogle Scholar
  56. 56.
    Ramadori G, Christ B. Cytokines and the hepatic acute-phase response. Semin Liver Dis 1999;19:141–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Syrjänen J, Teppo A-M, Valtonen VV, Iivanainen M, Maury CPJ. Acute phase response in cerebral infarction J Clin Pathol 1989;42:63–8.PubMedGoogle Scholar
  58. 58.
    Muir KW, Weir CJ, Alwan W, Squire IB, Lees KR. C-reactive protein and outcome after ischemic stroke. Stroke 1999;30:981–5.PubMedGoogle Scholar
  59. 59.
    Di Napoli M, Papa F, Bocola V. Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke 2001;32:133–8.PubMedGoogle Scholar
  60. 60.
    Silvestri A, Vitale C, Ferretti F, Onorati D, Fini M, Rosano GM. Plasma levels of inflammatory C-reactive protein and interleukin-6 predict outcome in elderly patients with stroke. J Am Geriatr Soc 2004;52(9):1586–7.PubMedGoogle Scholar
  61. 61.
    Hoshi T, Kitagawa K, Yamagami H, Furukado S, Hougaku H, Hori M. Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with silent brain infarction. Stroke 2005;36(4):768–72.PubMedGoogle Scholar
  62. 62.
    Di Napoli M. Early inflammatory response in ischemic stroke. Thromb Res 2001;103:261–4.PubMedGoogle Scholar
  63. 63.
    Winbeck K, Poppert H, Etgen T, Conrad B, Sander D. Prognostic relevance of early serial C-reactive protein measurements after first ischaemic stroke. Stroke 2002;33:2459–64.PubMedGoogle Scholar
  64. 64.
    Wilhelmsen L, Svärdsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984;311:501–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Kofoed SC, Wittrup HH, Sillesen H, Nordestgaard BG. Fibrinogen predicts ischaemic stroke and advanced atherosclerosis but not echolucent, rupture-prone carotid plaques: the Copenhagen City Heart Study. Eur Heart J 2003; 24:567–76.PubMedGoogle Scholar
  66. 66.
    Rothwell PM, Howard SC, Power DA, Gutnikov SA, Algra A, van Gijn J, Clark TG, Murphy MF, Warlow CP. Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke 2004;35:2300–5.PubMedGoogle Scholar
  67. 67.
    Belch J, Mclaren M, Hanslip J, Hill A, Davidson D. The white blood cell and plasma fibrinogen in thrombotic stroke: a significant correlation. Int Angiol 1998;17:120–4.PubMedGoogle Scholar
  68. 68.
    Chamorro A, Vila N, Ascaso C, Saiz A, Montalvo J, Alonso P, Tolosa E. Early prediction of stroke severity: role of the erythrocyte sedimentation rate. Stroke 1995;26:573–6.PubMedGoogle Scholar
  69. 69.
    Balestrino M, Partinico D, Finocchi C, Gandolfo C. White blood cell count and erythrocyte sedimentation rate correlate with outcome in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 1998;7:139–44.PubMedGoogle Scholar
  70. 70.
    Anuk T, Assayag EB, Rotstein R, Fusman R, Zeltser D, Berliner S, Avitzour D, Shapira I, Arber N, Bornstein NM. Prognostic implications of admission inflammatory profile in acute ischemic neurological events. Acta Neurol Scand 2002;106:196–9.PubMedGoogle Scholar
  71. 71.
    Bhatia RS, Garg RK, Gaur SP, Kar AM, Shukla R, Agarwal A, Verma R. Predictive value of routine hematological and biochemical parameters on 30-day fatality in acute stroke. Neurol India 2004;52:220–3.PubMedGoogle Scholar
  72. 72.
    Chamorro A, Vila N, Blanc R, Saiz A, Ascaso C, Deulofeu R. The prognostic value of the acute-phase response in stroke recurrence. Eur J Neurol 1997;4:491–7.Google Scholar
  73. 73.
    Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996;53(4):309–15.PubMedGoogle Scholar
  74. 74.
    Serena J, Blanco M, Castellanos M, Silva Y, Vivancos J, Moro MA, Leira R, Lizasoain I, Castillo J, Davalos A. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke 2005;36(9):1921–6.PubMedGoogle Scholar
  75. 75.
    Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W, DECIMAL, DESTINY, and HAMLET investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007;6:215–22.PubMedGoogle Scholar
  76. 76.
    Kasner SE, Demchuk AM, Berrouschot J, Schmutzhard E, Harms L, Verro P, Chalela JA, Abbur R, McGrade H, Christou I, Krieger DW. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke 2001;32(9):2117–23.PubMedGoogle Scholar
  77. 77.
    Bamford J, Sandercock P, Dennis M, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991;337:1521–6.PubMedGoogle Scholar
  78. 78.
    Tei H, Uchiyama S, Ohara K, Kobayashi M, Uchiyama Y, Fukuzawa M. Deteriorating ischemic stroke in 4 clinical categories classified by the Oxfordshire Community Stroke Project. Stroke 2000;31(9):2049–54.PubMedGoogle Scholar
  79. 79.
    Castellanos M, Castillo J, García MM, Leira R, Serena J, Chamorro A, Dávalos A. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke 2002;33:982–7.PubMedGoogle Scholar
  80. 80.
    Audebert HJ, Pellkofer TS, Wimmer ML, Haberl RL. Progression in lacunar stroke is related to elevated acute phase parameters. Eur Neurol 2004;51(3):125–31.PubMedGoogle Scholar
  81. 81.
    Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34(3):806–12.PubMedGoogle Scholar
  82. 82.
    Bath P. High blood pressure as risk factor and prognostic predictor in acute ischaemic stroke: when and how to treat it? Cerebrovasc Dis 2004;17 Suppl 1:51–7.PubMedGoogle Scholar
  83. 83.
    Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension 2001;38:399–403.PubMedGoogle Scholar
  84. 84.
    Di Napoli M, Papa F. Association between blood pressure and C-reactive protein levels in acute ischemic stroke. Hypertension 2003;42(6):1117–23.PubMedGoogle Scholar
  85. 85.
    Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycaemia, insulin, and acute ischaemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke 2006;37:267–73.PubMedGoogle Scholar
  86. 86.
    Gray CS, Hildreth AJ, Sandercock PA, O’Connell JE, Johnston DE, Cartlidge NE, Bamford JM, James OF, Alberti KG, GIST Trialists Collaboration. Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet Neurol 2007;6(5):397–406.PubMedGoogle Scholar
  87. 87.
    Li F, Omae T, Fisher M. Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 1999;30:2464–70.PubMedGoogle Scholar
  88. 88.
    Chen H, Chopp M, Welch KM. Effect of mild hyperthermia on the ischemic infarct volume after middle cerebral artery occlusion in the rat. Neurology 1991;41:1133–5.PubMedGoogle Scholar
  89. 89.
    Morikawa E, Ginsberg MD, Dietrich WD, Duncan RC, Kraydieh S, Globus MY, Busto R. The significance of brain temperature in focal cerebral ischemia: histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1992;12(3):380–9.PubMedGoogle Scholar
  90. 90.
    Kim Y, Busto R, Dietrich WD, Kraydieh S, Ginsberg MD. Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 1996;27(12):2274–80.PubMedGoogle Scholar
  91. 91.
    Reith J, Jørgensen HS, Pedersen PM, Nakayama H, Raaschou HO, Jeppesen LL, Olsen TS. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 1996;347:422–5.PubMedGoogle Scholar
  92. 92.
    Boysen G, Christensen H. Stroke severity determines body temperature in acute stroke. Stroke 2001;32:413–7.PubMedGoogle Scholar
  93. 93.
    Castillo J, Dávalos A, Marrugat J, Noya M. Timing for fever-related brain damage in acute ischemic stroke. Stroke 1998;29(12):2455–60.PubMedGoogle Scholar
  94. 94.
    Leira R, Rodríguez-Yáñez M, Castellanos M, Blanco M, Nombela F, Sobrino T, Lizasoain I, Dávalos A, Castillo J. Hyperthermia is a surrogate marker of inflammation-mediated cause of brain damage in acute ischaemic stroke. J Intern Med 2006;260(4):343–9.PubMedGoogle Scholar
  95. 95.
    Hajat C, Hajat S, Sharma P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 2000;31(2):410–4.PubMedGoogle Scholar
  96. 96.
    Kammersgaard LP, Jørgensen HS, Rungby JA, Reith J, Nakayama H, Weber UJ, Houth J, Olsen TS. Admission body temperature predicts long-term mortality after acute stroke: the Copenhagen Stroke Study. Stroke 2002;33(7):1759–62.PubMedGoogle Scholar
  97. 97.
    Marshall I, Karaszewski B, Wardlaw JM, Cvoro V, Wartolowska K, Armitage PA, Carpenter T, Bastin ME, Farrall A, Haga K. Measurement of regional brain temperature using proton spectroscopic imaging: validation and application to acute ischemic stroke. Magn Reson Imaging 2006;24(6):699–706.PubMedGoogle Scholar
  98. 98.
    Audebert HJ, Rott MM, Eck T, Haberl RL. Systemic inflammatory response depends on initial stroke severity but is attenuated by successful thrombolysis. Stroke 2004;35(9):2128–33.PubMedGoogle Scholar
  99. 99.
    Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM. The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 2004;24(9):945–63.PubMedGoogle Scholar
  100. 100.
    Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, Dávalos A. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 2003;34:40–6.PubMedGoogle Scholar
  101. 101.
    Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M, Quintana M, Alvarez-Sabín J. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003;107(4):598–603.PubMedGoogle Scholar
  102. 102.
    Heo JH, Kim SH, Lee KY, Kim EH, Chu CK, Nam JM. Increase in plasma matrix metalloproteinase-9 in acute stroke patients with thrombolysis failure. Stroke 2003;34(6):e48–50.PubMedGoogle Scholar
  103. 103.
    Amaro S, Soy D, Obach V, Cervera A, Planas AM, Chamorro A. A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke 2007;38(7):2173–5.PubMedGoogle Scholar
  104. 104.
    Kent TA, Soukup VM, Fabian RH. Heterogeneity affecting outcome from acute stroke therapy: making reperfusion worse. Stroke 2001;32(10):2318–27.PubMedGoogle Scholar
  105. 105.
    Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for the prevention of death, myocardial infarction, stroke in high risk patients. BMJ 2002;324:71–86.Google Scholar
  106. 106.
    Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997;336:973–9.PubMedGoogle Scholar
  107. 107.
    Steinhubl SR, Badimon JJ, Bhatt DL, Herbert JM, Luscher TF. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 2007;12:113–22.PubMedGoogle Scholar
  108. 108.
    Amarenco P, Lavallee P, Touboul PJ. Stroke prevention, blood cholesterol, and statins. Lancet Neurol 2004;3:271–8.PubMedGoogle Scholar
  109. 109.
    Albert MA, Danielson E, Rifai N, Ridker PM, for the PRINCE investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomised trial, cohort study. JAMA 2001;286:64–70.PubMedGoogle Scholar
  110. 110.
    Di Napoli M, Papa F. Inflammation, statins, and outcome after ischemic stroke. Stroke 2001;32:2446–7.PubMedGoogle Scholar
  111. 111.
    Cimino M, Gelosa P, Gianella A, Nobili E, Tremoli E, Sironi L. Statins: multiple mechanisms of action in the ischemic brain. Neuroscientist 2007;13(3):208–13.PubMedGoogle Scholar
  112. 112.
    Alvarez-Sabin J, Huertas R, Quintana M, Rubiera M, Delgado P, Ribo M, Molina CA, Montaner J. Prior statin use may be associated with improved stroke outcome after tissue plasminogen activator. Stroke 2007;38(3):1076–8.PubMedGoogle Scholar
  113. 113.
    The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342:145–53.Google Scholar
  114. 114.
    PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. Lancet 2001;358:1033–41.Google Scholar
  115. 115.
    Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H, LIFE study group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003.PubMedGoogle Scholar
  116. 116.
    Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001;104(3):365–72.PubMedGoogle Scholar
  117. 117.
    Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003;35:881–900.PubMedGoogle Scholar
  118. 118.
    Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology. 2001;57:1428–34.Google Scholar
  119. 119.
    Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, Wolcott KM, DeGraba TJ, Rothlein R, Hugli TE, del Zoppo GJ, Hallenbeck JM. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 2001;32:2665–74.PubMedGoogle Scholar
  120. 120.
    Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo J-M, Ford GA, for the ASTIN Study Investigators. Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 2003;34:2543–8.PubMedGoogle Scholar
  121. 121.
    Härtl R, Schürer L, Schmid-Schönbein GW, del Zoppo GJ. Experimental antileukocyte interventions in cerebral ischemia. J Cereb Blood Flow Metab 1996;16:1108–19.PubMedGoogle Scholar
  122. 122.
    Krieger DW, Yenari MA. Therapeutic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke 2004;35(6):1482–9.PubMedGoogle Scholar
  123. 123.
    Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA. Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 2002;114(4):1081–90.PubMedGoogle Scholar
  124. 124.
    Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab 2003;23(5):589–98.PubMedGoogle Scholar
  125. 125.
    Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346(8):549–56.Google Scholar
  126. 126.
    Hemmen TM, Lyden PD. Induced hypothermia for acute stroke. Stroke 2007;38 Suppl 2:794–9.PubMedGoogle Scholar
  127. 127.
    Adams H, Adams R, Del Zoppo G, Goldstein LB. Stroke Council of the American Heart Association; American Stroke Association. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke 2005;36(4):916–23.PubMedGoogle Scholar
  128. 128.
    Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2002;(2):CD000064.Google Scholar
  129. 129.
    Davis SM, Donnan GA. Steroids for stroke: another potential therapy discarded prematurely? Stroke 2004;35:230–1.PubMedGoogle Scholar
  130. 130.
    Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. The promise of minocycline in neurology. Lancet Neurol 2004;3(12):744–51.PubMedGoogle Scholar
  131. 131.
    Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 2007;69(14):1404–10.PubMedGoogle Scholar
  132. 132.
    Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2006;2(11):619–26.PubMedGoogle Scholar
  133. 133.
    Clark SR, McMahon CJ, Gueorguieva I, Rowland M, Scarth S, Georgiou R, Tyrrell PJ, Hopkins SJ, Rothwell NJ. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J Cereb Blood Flow Metab. 2007 Aug 8; [Epub ahead of print].Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Hedley C. A. Emsley
    • 1
  • Craig J. Smith
    • 2
  • Pippa J. Tyrrell
    • 2
  • Stephen J. Hopkins
    • 2
  1. 1.Division of Neuroscience, The Walton Centre for Neurology and NeurosurgeryThe University of LiverpoolLiverpoolUK
  2. 2.Clinical Neurosciences GroupThe University of Manchester and Stroke Medicine, Salford Royal Foundation TrustSalfordUK

Personalised recommendations