The sialoglycan-Siglec-E checkpoint axis in dexamethasone-induced immune subversion in glioma-microglia transwell co-culture system

  • Przemyslaw WielgatEmail author
  • Robert Czarnomysy
  • Emil Trofimiuk
  • Halina Car
Original Article


Dexamethasone (Dex) is considered as the main steroid routinely used in the standard therapy of brain tumor-induced edema. Strong immunosuppressive effects of Dex on effector systems of the immune system affect the patients’ antitumor immunity and may thereby worsen the prognosis. Siglecs and their interacting sialoglycans have been described as a novel glyco-immune checkpoint axis that promotes cancer immune evasion. Despite the aberrant glycosylation in cancer is described, mechanisms involved in regulation of immune checkpoints in gliomas are not fully understood. The aim of this study was to investigate the effect of Dex on the Siglec-sialic acid interplay and determine its significance in immune inversion in monocultured and co-cultured microglia and glioma cells. Both monocultured and co-cultured in transwell system embryonic stem cell-derived microglia (ESdM) and glioma GL261 cells were exposed to Dex. Cell viability, immune inversion markers, and interaction between sialic acid and Siglec-E were detected by flow cytometry. Cell invasion was analyzed by scratch-wound migration assay using inverted phase-contrast microscopy. Exposure to Dex led to significant changes in IL-1β, IL-10, Iba-1, and Siglec-E in co-cultured microglia compared to naïve or monocultured cells. These alterations were accompanied by increased α2.8-sialylation and Siglec-E fusion protein binding to co-cultured glioma cell membranes. This study suggests that the interplay between sialic acids and Siglecs is a sensitive immune checkpoint axis and may be crucial for Dex-induced dampening of antitumor immunity. The targeting of sialic acid-Siglec glyco-immune checkpoint can be a novel therapeutic method in glioma therapy.


Sialic acid Siglec Microglia Glioma Immunosurveillance 


Funding information

This work was funded by grant from Medical University of Bialystok (N/ST/ZB/18/001/1166) and grant from National Science Centre (2017/01/X/NZ3/01493).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Bosma I, Reijneveld JC, Douw L, Vos MJ, Postma TJ, Aaronson NK, et al. Health-related quality of life of long-term high-grade glioma survivors. Neuro-Oncology. 2009;11:51–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31:326–41.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36:6049–58.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Varki A. Sialic acids in human health and disease. Trends Mol. Med. 2008;14:351–60.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Vajaria BN, Patel KR, Begum R, Patel PS. Sialylation: an avenue to target cancer cells. Pathol. Oncol. Res. 2016;22:443–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pillai S, Netravali IA, Cariappa A, Mattoo H. Siglecs and immune regulation. Annu. Rev. Immunol. 2012;30:357–92.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology. Immunol. Rev. 2017;276:178–91.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mingari MC, Vitale C, Romagnani C, Falco M, Moretta L. p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol. Rev. 2001;181:260–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Steinke JW, Liu L, Huyett P, Negri J, Payne SC, Borish L. Prominent role of IFN-γ in patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2013;132:856–65.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wielgat P, Mroz RM, Stasiak-Barmuta A, Szepiel P, Chyczewska E, Braszko JJ, et al. Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients. Adv. Exp. Med. Biol. 2015;839:1–5.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol. Cell. Biochem. 2019;455:147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139:1458–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    The Cancer Genome Atlas (TCGA). National Institute of Health, Bethesda. 2019. Google Scholar
  14. 14.
    Shields LB, Shelton BJ, Shearer AJ, Chen L, Sun DA, Parsons S, et al. Dexamethasone administration during definitive radiation and temozolomide renders a poor prognosis in a retrospective analysis of newly diagnosed glioblastoma patients. Radiat. Oncol. 2015;10:222.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br. J. Cancer. 2015;113:232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Napoli I, Kierdorf K, Neumann H. Microglial precursors derived from mouse embryonic stem cells. Glia. 2009;57:1660–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Rezonja K, Sostaric M, Vidmar G, Mars T. Dexamethasone produces dose-dependent inhibition of sugammadex reversal in in vitro innervated primary human muscle cells. Anesth. Analg. 2014;118:755–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Goya L, Feng PT, Aliabadi S, Timiras PS. Effect of growth factors on the in vitro growth and differentiation of early and late passage C6 glioma cells. Int. J. Dev. Neurosci. 1996;14:409–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem. 2017;24:3002–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Adams OJ, Stanczak MA, von Gunten S, Läubli H. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology. 2018;28:640–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Pearce OM, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology. 2016;26:111–28.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P, Rougon G, et al. Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer. 2010;10:1–12.CrossRefGoogle Scholar
  23. 23.
    Petridis AK, Wedderkopp H, Hugo HH, Maximilian MH. Polysialic acid overexpression in malignant astrocytomas. Acta Neurochir. 2009;15:601–4.CrossRefGoogle Scholar
  24. 24.
    Monzo HJ, Coppieters N, Park TIH, Dieriks BV, Faull RLM, Dragunow M, et al. Insulin promotes cell migration by regulating PSA-NCAM. Exp. Cell Res. 2017;355:26–39.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol. 2016;17:1273–81.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Läubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc. Natl. Acad. Sci. U. S. A. 2014;111:14211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, et al. Siglec-9 regulates an effector memory CD8+ T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res. 2019;7:707–18.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 2019;25:656–66.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cao G, Xiao Z, Yin Z. Normalization cancer immunotherapy: blocking Siglec-15! Signal Transduct Target Ther. 2019;4:10.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang Y, Neumann H. Alleviation of neurotoxicity by microglial human Siglec-11. J. Neurosci. 2010;30:3482–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Salminen A, Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer's disease. J Mol Med (Berl). 2009;87:697–701.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Luedi MM, Singh SK, Mosley JC, Hatami M, Gumin J, Sulman EP, et al. A dexamethasone-regulated gene signature is prognostic for poor survival in glioblastoma patients. J. Neurosurg. Anesthesiol. 2017;29:46–58.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rouiller Y, Périlleux A, Marsaut M, Stettler M, Vesin MN, Broly H. Effect of hydrocortisone on the production and glycosylation of an Fc-fusion protein in CHO cell cultures. Biotechnol. Prog. 2012;28:803–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Burkhardt T, Lüdecke D, Spies L, Wittmann L, Westphal M, Flitsch J. Hippocampal and cerebellar atrophy in patients with Cushing’s disease. Neurosurg. Focus. 2015;39:E5.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang H, Zhao Y, Wang Z. Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. Neurosci. Lett. 2015;592:76–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Wielgat P, Walesiuk A, Braszko JJ. Effects of chronic stress and corticosterone on sialidase activity in the rat hippocampus. Behav. Brain Res. 2011;222:363–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Zeng Z, Li M, Wang M, Wu X, Li Q, Ning Q, et al. Increased expression of Siglec-9 in chronic obstructive pulmonary disease. Sci. Rep. 2017;7:10116.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell. Mol. Life Sci. 2013;70:3199–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pepe G, De Maglie M, Minoli L, Villa A, Maggi A, Vegeto E. Selective proliferative response of microglia to alternative polarization signals. J. Neuroinflammation. 2017;14:236.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gjorgjevski M, Hannen R, Carl B, Li Y, Landmann E, Buchholz M, Bartsch JW, Nimsky C. Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival. Biosci. Rep. 2019;39: pii:BSR20182361.Google Scholar
  42. 42.
    Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 2016;53:1181–94.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 2012;4:376–89.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, et al. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology. 2015;220:545–54.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lübbers J, Rodríguez E, van Kooyk Y. Modulation of immune tolerance via Siglec-sialic acid interactions. Front. Immunol. 2018;9:2807.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia. 2002;40:252–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Roggendorf W, Strupp S, Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol. 1996;92:288–93.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Santegoets KCM, Gielen PR, Büll C, Schulte BM, Kers-Rebel ED, Küsters B, et al. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol. Immunother. 2019;68:937–49.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical PharmacologyMedical University of BialystokBialystokPoland
  2. 2.Department of Synthesis and Technology of DrugsMedical University of BialystokBialystokPoland
  3. 3.Department of Experimental PharmacologyMedical University of BialystokBialystokPoland

Personalised recommendations