Advertisement

Review of the “X chromosome-nucleolus nexus” hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus

  • Wesley H. Brooks
Hypothesis
  • 28 Downloads

Abstract

The “X chromosome-nucleolus nexus” hypothesis provides a comprehensive explanation of how autoantibodies can develop following cellular stress. The hypothesis connects autoimmune diseases with the impact of environmental factors, such as viruses, through epigenetic disruption. The inactive X chromosome, a major epigenetic structure in the female cell’s nucleus, is a key component of the hypothesis. The inactive X is vulnerable to disruption due to the following: (1) its heavy requirements for methylation to suppress gene expression, (2) its peripheral location at the nuclear envelope, (3) its late replication timing, and (4) its frequently observed close association with the nucleolus. The dynamic nucleolus can expand dramatically in response to cellular stress and this could disrupt the neighboring inactive X, particularly during replication, leading to expression from previously suppressed chromatin. Especially vulnerable at the surface of the inactive X chromosome would be genes and elements from Xp22 to the terminus of the short arm of the X. Expression of these genes and elements could interfere with nucleolar integrity, nucleolar efficiency, and future nucleolar stress response, and even lead to fragmentation of the nucleolus. Ribonucleoprotein complexes assembled in the nucleolus could be left in incomplete states and inappropriate conformations, and/or contain viral components when the nucleolus is disrupted and these abnormal complexes could initiate an autoimmune response when exposed to the immune system. Epitope spreading could then lead to an autoimmune reaction to the more abundant normal complexes. Many autoantigens reported in lupus and other autoimmune diseases are, at least transiently, nucleolar components.

Keywords

Barr body X chromosome Nucleolus Alu Polyamines Lupus 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that there are no conflicts of interest.

References

  1. 1.
    Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 2008;58:2511–7.  https://doi.org/10.1002/art.23701.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Barr ML, Bertram EG. A morphological distinction between neurons of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 1949;163:676–7.CrossRefGoogle Scholar
  3. 3.
    Zhang LF, Huynh KD, Lee JT. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell. 2007;129:693–706.CrossRefGoogle Scholar
  4. 4.
    Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015;6:22–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Brooks WH, Renaudineau Y. The ‘nucleolus’ hypothesis of autoimmune diseases and its implications. Eur. Med J. 2017;2:82–9.Google Scholar
  6. 6.
    Brooks WH. A review of autoimmune disease hypotheses with introduction of the “nucleolus” hypothesis. Clin Rev Allergy Immunol. 2017;52:333–50.CrossRefGoogle Scholar
  7. 7.
    Brooks W. Autoimmune diseases and polyamines. Clinic Rev Allerg Immu. 2012;42:58–70.CrossRefGoogle Scholar
  8. 8.
    Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biol. 2006;8:293–9.  https://doi.org/10.1038/ncb1365.CrossRefGoogle Scholar
  9. 9.
    Finestra TR, Bribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol. 2017;46:54–61.CrossRefGoogle Scholar
  10. 10.
    Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell. 2010;143:390–403.CrossRefPubMedGoogle Scholar
  11. 11.
    Gendrel AV, Heard E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Ann Rev Cell Dev Biol. 2014;30:561–80.CrossRefGoogle Scholar
  12. 12.
    Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev. 2015;31:57–66.CrossRefGoogle Scholar
  13. 13.
    Gendrel AV, Heard E. Fifty years of X inactivation research. Development. 2011;138:5049–55.CrossRefGoogle Scholar
  14. 14.
    Lyon MF. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet. 1998;80:133–7.CrossRefGoogle Scholar
  15. 15.
    Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. PNAS. 2000;97(12):6634–9.  https://doi.org/10.1073/pnas.97.12.6634.CrossRefGoogle Scholar
  16. 16.
    Ross MT, Graham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome. Nature. 2005;434:325–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Disteche CM, Berletch JB. X-chromosome inactivation and escape. J Genet. 2015;94:591–9.CrossRefPubMedGoogle Scholar
  18. 18.
    McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Balaton BP, Brown CJ. Escape artists of the X chromosome. Trends Genet. 2016;32:348–59.  https://doi.org/10.1016/j.tig.2016.03.007.CrossRefGoogle Scholar
  20. 20.
    Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4.CrossRefGoogle Scholar
  21. 21.
    Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human Population. Proc Natl Acad Sci U S A. 2003;100:5280–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Li JZ, Steinman CR. Plasma DNA in systemic lupus erythematosus. Arthritis Rheum. 1989;32:726–33.CrossRefGoogle Scholar
  23. 23.
    Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35:41–8.CrossRefGoogle Scholar
  24. 24.
    Sawalha AH, Webb R, Han S, Kelly JA, Kaufman KM, Kimberly RP, et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS One. 2008;3:e1727.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou Y, Yuan J, Pan Y, Fei Y, Qiu X, Hu N, et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin Immunol. 2009;132:362–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. PNAS. 2010;107:15838–43.CrossRefGoogle Scholar
  27. 27.
    Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, et al. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmunity. 2013;41:60–71.CrossRefGoogle Scholar
  28. 28.
    Spriggs MK, Armitage RJ, Comeau MR, Strockbine L, Farrah T, Macduff B, et al. The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J Virol. 1996;70:5557–63.PubMedCentralPubMedGoogle Scholar
  29. 29.
    O’Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? BioMol Concepts. 2013;4:277–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Padeken J, Heun P. Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr Opin Cell Biol. 2014;28:54–60.CrossRefGoogle Scholar
  31. 31.
    Grummt I. The nucleolus--guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–97.CrossRefGoogle Scholar
  32. 32.
    Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database—2008 update. Nucleic Acids Res. 2009;37(suppl 1):D181–4.  https://doi.org/10.1093/nar/gkn804.CrossRefGoogle Scholar
  33. 33.
    O’Day DH, Catalano A. Proteins of the nucleolus: an introduction. In: O’Day D, Catalano A, editors. Proteins of the nucleolus. Dordrecht: Springer; 2013. p. 3–15.CrossRefGoogle Scholar
  34. 34.
    Boisvert FM, Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8:574–85.  https://doi.org/10.1038/nrm2184.CrossRefGoogle Scholar
  35. 35.
    Lam YW, Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000 Prime Rep. 2015;7:48–57.CrossRefGoogle Scholar
  36. 36.
    Ogawa LM, Baserga SJ. Crosstalk between the nucleolus and the DNA damage response. Mol BioSyst. 2017;13:443–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus. 2011;2:189–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ. The nucleolus: structure/function relationship in RNA metabolism. WIREs RNA. 2010;1:415–31.CrossRefGoogle Scholar
  39. 39.
    Goyns MH. Relationship between polyamine accumulation and RNA biosynthesis and content during the cell cycle. Experientia. 1981;37:34–5.CrossRefGoogle Scholar
  40. 40.
    Hiscox JA. RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol. 2007;5:119–27.CrossRefGoogle Scholar
  41. 41.
    Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta. 2014;1842:840–7.CrossRefGoogle Scholar
  42. 42.
    Hanlon P, Avenell A, Aucott L, Vickers MA. Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res Ther. 2014;16:R3.  https://doi.org/10.1186/ar4429.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol. 2015;390:365–85.  https://doi.org/10.1007/978-3-319-22822-8_15.CrossRefGoogle Scholar
  44. 44.
    Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target of gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A. 1993;90:7084–8.  https://doi.org/10.1073/pnas.90.16.7804.CrossRefGoogle Scholar
  46. 46.
    Dang CV. c-Myc targets genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol. 2005;7:311–8.CrossRefGoogle Scholar
  48. 48.
    Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature. 2003;421:290–4.CrossRefGoogle Scholar
  49. 49.
    Yaniv G, Twig G, Shor DBA, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2015;14:75–9.CrossRefGoogle Scholar
  50. 50.
    Reichlin M. Systemic lupus erythematosus. In Systemic autoimmunity. In: Bigazzi PE, Reichlin M, editors. , vol. 54. New York: Marcel Dekker; 1991. p. 163–200.Google Scholar
  51. 51.
    Li XZ, McNeilage LJ, Whittingham S. Autoantibodies to the major nucleolar phosphoprotein B23 define a novel subset of patients with anticardiolipin antibodies. Arthritis Rheum. 1989;32:1165–9.CrossRefGoogle Scholar
  52. 52.
    Wang Y, Xie J, Liu Z, Fu H, Huo Q, Gu Y, et al. Association of calreticulin expression with disease activity and organ damage in systemic lupus erythematosus patients. Exp Therap Med. 2017;13:2577–83.CrossRefGoogle Scholar
  53. 53.
    Nagai T, Arinuma Y, Yanaagida T, Yamamoto K, Hirohata S. Anti-ribosomal P protein antibody in human systemic lupus erythematosus up-regulates the expression of proinflammatory cytokines by human peripheral blood monocytes. Arthritis Rheum. 2005;52:847–55.CrossRefGoogle Scholar
  54. 54.
    Lassoued K, Guilly MN, Danon F, Andre C, Dhumeaux D, Clauvel JP, et al. Antinuclear autoantibodies specific for lamins: characterization and clinical significance. Ann Intern Med. 1988;108:829–33.CrossRefGoogle Scholar
  55. 55.
    Hengstman GJD, Ter Laak HJ, Egberts WTMV, Lundberg IE, Moutsopoulos HM, Vencovsky J, et al. Anti-signal recognition particle autoantibodies: marker of a necrotizing myopathy. Rheum Dis. 2006;65:1635–8.CrossRefGoogle Scholar
  56. 56.
    Okano Y, Medsger TA. Autoantibody to the ribonucleoprotein (nucleolar 7–2 rna protein particle) in patients with systemic sclerosis. Arthritis Rheum. 1990;33:1822–8.CrossRefGoogle Scholar
  57. 57.
    Okano Y, Steen VD, Medsger TA. Autoantibody to U3 nucleolar ribonucleoprotein (fibrillarin) in patients with systemic sclerosis. Arthritis Rheum. 1992;35:95–100.CrossRefGoogle Scholar
  58. 58.
    Kipnis RJ, Craft J, Hardin JA. The analysis of antinuclear and antinucleolar autoantibodies of scleroderma by radioimmunoprecipitation assays. Arthritis Rheum. 1990;33:1431–7.CrossRefGoogle Scholar
  59. 59.
    Okano Y, Steen VD, Medsger TA. Autoantibody reactive with RNA polymerase III in systemic sclerosis. Ann Intern Med. 1993;119:1005–13.CrossRefGoogle Scholar
  60. 60.
    Oddis CV, Okano Y, Rudert WA, Trucco M, Duquesnoy RJ, Medsger TA. Serum autoantibody to the nucleolar antigen PM-Scl: clinical and immunogenetic associations. Arthritis Rheum. 1992;35:1211–7.CrossRefGoogle Scholar
  61. 61.
    Reimer G, Steen VD, Penning CA, Medsger TA, Tan EM. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum. 1988;31:525–32.CrossRefGoogle Scholar
  62. 62.
    Jarjour WN, Minota S, Roubey RAS, Mimura T, Winfield JB. Autoantibodies to nucleolin cross-react with histone H1 in systemic lupus erythematosus. Mol Biol Rep. 1992;16:263–6.CrossRefGoogle Scholar
  63. 63.
    Lyu G, Tan T, Guan Y, Sun L, Liang Q, Tao W. Changes in the position and volume of inactive X chromosomes during the G0/G1 transition. Chromosome Res. 2018;26:179–89.  https://doi.org/10.1007/s10577-018-9577-0.CrossRefGoogle Scholar
  64. 64.
    Yang F, Deng X, Ma W, Berletch JB, Rabaia N, Wei G, et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding. Genome Biol. 2015;16(52):52.CrossRefPubMedGoogle Scholar
  65. 65.
    Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I, et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015;34:2758–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Brooks WH. Viral impact in autoimmune diseases: expanding the “X chromosome-nucleolus nexus” hypothesis. Front Immunol. 2017;8:1657–70.  https://doi.org/10.3389/fimmu.2017.01657.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Wise AL, Gyi L, Manolio TA. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am J Hum Genet. 2013;92:643–7.  https://doi.org/10.1016/j.ajhg.2013.03.017.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Neidhart M, Karouzakis E, Jungel A, Gay RE, Gay S. Inhibition of spermidine/spermine N1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. Mol Cell. 2014;66:1723–33.Google Scholar
  69. 69.
    Higashi K, Yoshida M, Igarashi A, Ito K, Wada Y, Murakami S, et al. Intense correlation between protein-conjugated acrolein and primary Sjӧgren’s syndrome. Clin Chim Acta. 2009;411:359–63.  https://doi.org/10.1016/j.cca.2009.11.032.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations