Advertisement

Immunization with Chlamydia psittaci plasmid-encoded protein CPSIT_p7 induces partial protective immunity against chlamydia lung infection in mice

  • Yuan Tan
  • Yumeng Li
  • Yang Zhang
  • Jian Yu
  • Yating Wen
  • Chuan Wang
  • Man Xu
  • Qian Chen
  • Chunxue Lu
  • Yimou Wu
Original Article

Abstract

The present study evaluated the immune-protective efficacy of the Chlamydia psittaci (C. psittaci) plasmid protein CPSIT_p7 and analyzed the potential mechanisms of this protection. The current study used recombinant CPSIT_p7 protein with Freund’s complete adjuvant and Freund’s incomplete adjuvant to vaccinate BALB/c mice. Adjuvants alone or PBS formulated with the same adjuvants was used as negative controls. Mice were intranasally challenged with 105 inclusion-forming units (IFU) of C. psittaci. We found that CPSIT_p7 vaccination significantly decreased the mouse lung chlamydial load, interferon-γ (IFN-γ) level, and pathological injury. This protection correlated well with specific humoral and cellular immune responses against C. psittaci. In vitro or in vivo neutralization of C. psittaci with sera harvested from immunized mice did not reduce the number of recoverable C. psittaci in the infected lungs, but CD4+ spleen cells collected from CPSIT_p7-immunized mice significantly decreased the chlamydial load via adoptive transfer to native mice. These results reveal that the protection conferred by CPSIT_p7 is dependent on CD4+ T cells.

Keywords

C. psittaci Plasmid protein CPSIT_p7 Protective immunity CD4+ T cells 

Notes

Funding information

This study was funded by the Natural Science Foundation of China (Grant No. 31270218, Grant No. 81171588, Grant No. 81671986) and the Special Foundation of Hunan Provincial Science and Technology Department (2013TT1003), the construct program of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control Foundation (Grant No. 2014-5), Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study (Grant No. 2015-351), and the Foundation of the First Hospital of Changsha City (Grant No. Y2018-18). 

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Animal Welfare and Ethics Committee of the University of South China approved all animal procedures and treatments, which were performed in accordance with the regulations of the institution.

Supplementary material

12026_2018_9018_Fig7_ESM.png (18 kb)
Fig. S1

(PNG 17 kb)

12026_2018_9018_MOESM1_ESM.tif (13.3 mb)
High Resolution image (TIF 13608 kb)
12026_2018_9018_Fig8_ESM.png (31 kb)
Fig. S2

(PNG 30 kb)

12026_2018_9018_MOESM2_ESM.tif (6.9 mb)
High Resolution image (TIF 7042 kb)

References

  1. 1.
    Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29(5):949–59.  https://doi.org/10.1016/j.femsre.2005.03.002.CrossRefPubMedGoogle Scholar
  2. 2.
    Knittler MR, Sachse K. Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog Dis. 2015;73(1):1–15.  https://doi.org/10.1093/femspd/ftu007.CrossRefPubMedGoogle Scholar
  3. 3.
    Gaede W, Reckling KF, Dresenkamp B, Kenklies S, Schubert E, Noack U, et al. Chlamydophila psittaci infections in humans during an outbreak of psittacosis from poultry in Germany. Zoonoses Public Health. 2008;55(4):184–8.  https://doi.org/10.1111/j.1863-2378.2008.01108.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet J. 2006;171(2):263–75.  https://doi.org/10.1016/j.tvjl.2004.09.006.CrossRefPubMedGoogle Scholar
  5. 5.
    Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines. 2011;10(11):1585–96.  https://doi.org/10.1586/erv.11.139.CrossRefPubMedGoogle Scholar
  6. 6.
    Xu W, Liu J, Gong W, Chen J, Zhu S, Zhang L. Protective immunity against Chlamydia trachomatis genital infection induced by a vaccine based on the major outer membrane multi-epitope human papillomavirus major capsid protein L1. Vaccine. 2011;29(15):2672–8.  https://doi.org/10.1016/j.vaccine.2010.12.132.CrossRefPubMedGoogle Scholar
  7. 7.
    Pawlikowska-Warych M, Sliwa-Dominiak J, Deptula W. Chlamydial plasmids and bacteriophages. Acta Biochim Pol. 2015;62(1):1–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HM, et al. Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model. Pathog Dis. 2014;70(1):61–9.  https://doi.org/10.1111/2049-632X.12086.CrossRefPubMedGoogle Scholar
  9. 9.
    O'Connell CM, Ingalls RR, Andrews CW Jr, Scurlock AM, Darville T. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol. 2007;179(6):4027–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Lei L, Chen J, Hou S, Ding Y, Yang Z, Zeng H, et al. Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum. Infect Immun. 2014;82(3):983–92.  https://doi.org/10.1128/IAI.01543-13.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas NS, Lusher M, Storey CC, Clarke IN. Plasmid diversity in Chlamydia. Microbiology. 1997;143(Pt 6):1847–54.  https://doi.org/10.1099/00221287-143-6-1847.CrossRefPubMedGoogle Scholar
  12. 12.
    Palmer L, Falkow S. A common plasmid of Chlamydia trachomatis. Plasmid. 1986;16(1):52–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Li Z, Chen D, Zhong Y, Wang S, Zhong G. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun. 2008;76(8):3415–28.  https://doi.org/10.1128/IAI.01377-07.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Y, Huang Y, Yang Z, Sun Y, Gong S, Hou S, et al. Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice. Infect Immun. 2014;82(12):5327–35.  https://doi.org/10.1128/IAI.02576-14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen D, Lei L, Lu C, Galaleldeen A, Hart PJ, Zhong G. Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J Bacteriol. 2010;192(22):6017–24.  https://doi.org/10.1128/JB.00847-10.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mosolygo T, Szabo AM, Balogh EP, Faludi I, Virok DP, Endresz V, et al. Protection promoted by pGP3 or pGP4 against Chlamydia muridarum is mediated by CD4(+) cells in C57BL/6N mice. Vaccine. 2014;32(40):5228–33.  https://doi.org/10.1016/j.vaccine.2014.07.039.CrossRefPubMedGoogle Scholar
  17. 17.
    Liang M, Wen Y, Ran O, Chen L, Wang C, Li L, et al. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci. Appl Microbiol Biotechnol. 2016;100(14):6385–93.  https://doi.org/10.1007/s00253-016-7494-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Dutow P, Fehlhaber B, Bode J, Laudeley R, Rheinheimer C, Glage S, et al. The complement C3a receptor is critical in defense against Chlamydia psittaci in mouse lung infection and required for antibody and optimal T cell response. J Infect Dis. 2014;209(8):1269–78.  https://doi.org/10.1093/infdis/jit640.CrossRefPubMedGoogle Scholar
  19. 19.
    Ran O, Liang M, Yu J, Yu M, Song Y, Yimou W. Recombinant protein CPSIT_0846 induces protective immunity against Chlamydia psittaci infection in BALB/c mice. Pathog Dis. 2017;75(3)  https://doi.org/10.1093/femspd/ftx018.
  20. 20.
    Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM, et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis. 1996;173(6):1437–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Holland MJ, Bailey RL, Conway DJ, Culley F, Miranpuri G, Byrne GI, et al. T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin Exp Immunol. 1996;105(3):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Faal N, Bailey RL, Sarr I, Joof H, Mabey DC, Holland MJ. Temporal cytokine gene expression patterns in subjects with trachoma identify distinct conjunctival responses associated with infection. Clin Exp Immunol. 2005;142(2):347–53.  https://doi.org/10.1111/j.1365-2249.2005.02917.x.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infect Immun. 2002;70(6):2741–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang X. Role of cytokines in Chlamydia trachomatis protective immunity and immunopathology. Curr Pharm Des. 2003;9(1):67–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Loomis WP, Starnbach MN. T cell responses to Chlamydia trachomatis. Curr Opin Microbiol. 2002;5(1):87–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Donati M, Sambri V, Comanducci M, Di Leo K, Storni E, Giacani L, et al. DNA immunization with pgp3 gene of Chlamydia trachomatis inhibits the spread of chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine. 2003;21(11–12):1089–93.CrossRefPubMedGoogle Scholar
  27. 27.
    Li Z, Wang S, Wu Y, Zhong G, Chen D. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci China C Life Sci. 2008;51(11):973–80.  https://doi.org/10.1007/s11427-008-0130-9.CrossRefPubMedGoogle Scholar
  28. 28.
    Rank RG, Ramsey KH, Pack EA, Williams DM. Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect Immun. 1992;60(10):4427–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Moore T, Ekworomadu CO, Eko FO, MacMillan L, Ramey K, Ananaba GA, et al. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J Infect Dis. 2003;188(4):617–24.  https://doi.org/10.1086/377134.CrossRefPubMedGoogle Scholar
  30. 30.
    Cunningham KA, Carey AJ, Timms P, Beagley KW. CD4+ T cells reduce the tissue burden of Chlamydia muridarum in male BALB/c mice. Vaccine. 2010;28(31):4861–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Pal S, Tatarenkova OV, de la Maza LM. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Immunology. 2015;146(3):432–43.  https://doi.org/10.1111/imm.12520.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Igietseme JU, Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun. 2000;68(12):6798–806.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang D, Yang X, Berry J, Shen C, McClarty G, Brunham RC. DNA vaccination with the major outer-membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection. J Infect Dis. 1997;176(4):1035–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang DJ, Yang X, Shen C, Brunham RC. Characterization of immune responses following intramuscular DNA immunization with the MOMP gene of Chlamydia trachomatis mouse pneumonitis strain. Immunology. 1999;96(2):314–21.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nandre RM, Jawale CV, Lee JH. Enhanced protective immune responses against Salmonella enteritidis infection by Salmonella secreting an Escherichia coli heat-labile enterotoxin B subunit protein. Comp Immunol Microbiol Infect Dis. 2013;36(5):537–48.  https://doi.org/10.1016/j.cimid.2013.06.002.CrossRefPubMedGoogle Scholar
  36. 36.
    Nandre RM, Lee JH. Generation of a safe Salmonella gallinarum vaccine candidate that secretes an adjuvant protein with immunogenicity and protective efficacy against fowl typhoid. Avian pathology : journal of the WVPA. 2014;43(2):164–71.  https://doi.org/10.1080/03079457.2014.897682.CrossRefGoogle Scholar
  37. 37.
    Nandre RM, Lee JH. Comparative evaluation of safety and efficacy of a live Salmonella gallinarum vaccine candidate secreting an adjuvant protein with SG9R in chickens. Vet Immunol Immunopathol. 2014;162(1–2):51–8.  https://doi.org/10.1016/j.vetimm.2014.08.014.CrossRefPubMedGoogle Scholar
  38. 38.
    Morrison SG, Farris CM, Sturdevant GL, Whitmire WM, Morrison RP. Murine Chlamydia trachomatis genital infection is unaltered by depletion of CD4+ T cells and diminished adaptive immunity. J Infect Dis. 2011;203(8):1120–8.  https://doi.org/10.1093/infdis/jiq176.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Igietseme JU, Magee DM, Williams DM, Rank RG. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun. 1994;62(11):5195–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Su H, Caldwell HD. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun. 1995;63(9):3302–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Tan
    • 1
    • 2
    • 3
    • 4
  • Yumeng Li
    • 1
    • 2
    • 3
  • Yang Zhang
    • 5
  • Jian Yu
    • 1
    • 2
    • 3
  • Yating Wen
    • 1
    • 2
    • 3
  • Chuan Wang
    • 1
    • 2
    • 3
  • Man Xu
    • 1
    • 2
    • 3
  • Qian Chen
    • 1
    • 2
    • 3
  • Chunxue Lu
    • 1
    • 2
    • 3
  • Yimou Wu
    • 1
    • 2
    • 3
  1. 1.Institution of Pathogenic Biology, Medical CollegeUniversity of South ChinaHengyangChina
  2. 2.Hunan Province Cooperative Innovation Center for Molecular Target New Drug StudyUniversity of South ChinaHengyangChina
  3. 3.Hunan Provincial Key Laboratory for Special Pathogens Prevention and ControlUniversity of South ChinaHengyangChina
  4. 4.Dermatology, the First Hospital of Changsha CityChangshaChina
  5. 5.Department of PathologyUniversity of South ChinaHengyangChina

Personalised recommendations